
More Recursion

Tiziana Ligorio
!1

Today’s Plan

Recursion Review

8 Qeens Problem

Permutations

Combinations

!2

Reverse String:  
 - single recursive call  
 - Base case: stop => no return value

Dictionary:  
 - split problem into halves but solve only 1  
 - Base case: stop => no return value

Fractal Tree:  
 - split problem into halves and solve both 
 - Base case: stop => no return value

Factorial:  
 - single recursive call  
 - Base case: return a value for computation in each recursive call

Types of Recursion

!3

Why/When use recursion

Usually less efficient than iterative counterparts (we will see
example later in the course)

Inherent overhead associated with function calls

Repeated recursive calls with same parameters

Compilers can optimize tail-recursive (recursive call is the last
statement in the function) functions to be iterative

Sometimes logic of iterative solution can be very complex in
comparison to recursive solution

!4

The Eight Queens Problem

!5

Place 8 Queens on the
board s.t. no queen is on
the same row, column or

diagonal

The Eight Queens Problem

!6

The Eight Queens Problem

!7

The Eight Queens Problem

!8

The Eight Queens Problem

!9

The Eight Queens Problem

!10

The Eight Queens Problem

!11

Backtracking!

The Eight Queens Problem

!12

Backtracking!

The Eight Queens Problem

!13

The Eight Queens Problem

How can we express this problem recursively?

!14

The Eight Queens Problem

How can we express this problem recursively?

!15

Place queen on column i
Recursively solve on

columns (i+1) to 8

The Eight Queens Problem

How do we backtrack?

!16

The Eight Queens Problem

How do we backtrack?

!17

Communicate to calling
function that there are no
options left, it should try

something else!

bool placeQueens(board, column)
{
if(column > BOARD_SIZE)
return true; //Problem is solved!

else 
 {

while(there are safe squares in this column)
{
//place queen in next safe square;

 if(placeQueen(board, column+1)) //recursively look forward
return true; //queen safely placed

}
return false; //recursive backtracking 

} 
}

!18

The Eight Queens Problem

The Eight Queens Problem

bool placeQueens(board, column)
{
if(column > BOARD_SIZE)
return true; //Problem is solved!

else 
 {

while(there are safe squares in this column)
{
//place queen in next safe square;

 if(placeQueen(board, column+1)) //recursively look forward
return true; //queen safely placed

}
return false; //recursive backtracking 

} 
}

!19

Think Algorithmically
“Experienced Computer Scientists analyze and solve computational problems at a level
of abstraction that is beyond that of any particular programming language /
representation / implementation”

Algorithm Design  
 - Identify the problem (input, output, states) 
 - Come up with a procedure that will lead to solution 
 - Independent of implementation detail

Model your problem/data 
 - represent the problem to support your algorithm

Implement solution  
 - Language 
 - Data structure 
 - Implementation detail

!20

Initial phase/step

Think Algorithmically
- Takes practice 
- The more you see/do the easier it gets  
- There are some frameworks that can guide you, we have
see only a few, you will continue to learn more throughout
your career  
E.g.  
 - Can I cast this as a backtracking problem? 
 - Can I cast this as a decision-making / decision
 tree problem? 
 - Do I need to enumerate all solutions? 
 - Am I looking for best/optimal solution?

!21

Lecture Activity
Write PSEUDOCODE for a RECURSIVE function that finds a path from origin to destination.  
Assume cities are visited in alphabetical order.  
bool findPath(map, origin, destination)

!22

Origin = P , Destination = Z

!22

Lecture Activity
Write PSEUDOCODE for a RECURSIVE function that finds a path from origin to destination.  
Assume cities are visited in alphabetical order.  
bool findPath(map, origin, destination)

!23

P
Origin = P , Destination = Z

!23

Lecture Activity
Write PSEUDOCODE for a RECURSIVE function that finds a path from origin to destination.  
Assume cities are visited in alphabetical order.  
bool findPath(map, origin, destination)

!24

P
Origin = P , Destination = Z

R

!24

Lecture Activity
Write PSEUDOCODE for a RECURSIVE function that finds a path from origin to destination.  
Assume cities are visited in alphabetical order.  
bool findPath(map, origin, destination)

!25

P
Origin = P , Destination = Z

R

X

!25

Lecture Activity
Write PSEUDOCODE for a RECURSIVE function that finds a path from origin to destination.  
Assume cities are visited in alphabetical order.  
bool findPath(map, origin, destination)

!26

P
Origin = P , Destination = Z

R

X

!26

Lecture Activity
Write PSEUDOCODE for a RECURSIVE function that finds a path from origin to destination.  
Assume cities are visited in alphabetical order.  
bool findPath(map, origin, destination)

!27

P
Origin = P , Destination = Z

R

X

!27

Lecture Activity
Write PSEUDOCODE for a RECURSIVE function that finds a path from origin to destination.  
Assume cities are visited in alphabetical order.  
bool findPath(map, origin, destination)

!28

P
Origin = P , Destination = Z

R

X

W

!28

Lecture Activity
Write PSEUDOCODE for a RECURSIVE function that finds a path from origin to destination.  
Assume cities are visited in alphabetical order.  
bool findPath(map, origin, destination)

!29

P
Origin = P , Destination = Z

R

X

W

S

!29

Lecture Activity
Write PSEUDOCODE for a RECURSIVE function that finds a path from origin to destination  
Assume cities are visited in alphabetical order.  
bool findPath(map, origin, destination)

!30

P
Origin = P , Destination = Z

R

X

W

S

T

!30

Lecture Activity
Write PSEUDOCODE for a RECURSIVE function that finds a path from origin to destination  
Assume cities are visited in alphabetical order.  
bool findPath(map, origin, destination)

!31

P
Origin = P , Destination = Z

R

X

W

S

T

!31

Lecture Activity
Write PSEUDOCODE for a RECURSIVE function that finds a path from origin to destination  
Assume cities are visited in alphabetical order.  
bool findPath(map, origin, destination)

!32

P
Origin = P , Destination = Z

R

X

W

S

T

!32

Lecture Activity
Write PSEUDOCODE for a RECURSIVE function that finds a path from origin to destination  
Assume cities are visited in alphabetical order.  
bool findPath(map, origin, destination)

!33

P
Origin = P , Destination = Z

R

X

W

S

T

Y

!33

Lecture Activity
Write PSEUDOCODE for a RECURSIVE function that finds a path from origin to destination  
Assume cities are visited in alphabetical order.  
bool findPath(map, origin, destination)

!34

P
Origin = P , Destination = Z

R

X

W

S

T

Y

Z

!34

Lecture Activity
Write PSEUDOCODE for a RECURSIVE function that finds a path from origin to destination  
Assume cities are visited in alphabetical order.  
bool findPath(map, origin, destination)

!35

P
Origin = P , Destination = Z

R

X

W

S

T

Y

Z

!35

Don’t get bogged down
by what a map is.

 In design phase you
know it’s available and
you can look up where
you can go next from

Lecture Activity
bool findPath(map, origin, destination)  
{  

mark origin as visited in map  
if origin == destination  

return true  
else  

for each unvisited city C reachable from origin  
if findPath(map, C, destination)  

return true  
return false //recursive backtracking  

}

P
Origin = P , Destination = Z

R

X

W

S

T

Y

Z

!36

Recursive call

Find Permutations

!37

A B C

A B C

A B D

D

D

C

A C B

A C D

D

B

A D B

A D C

C

B

B A C

B A D

D

C

B C A

B C D

D

A

B D A

B D C

C

A

C A B

C A D

D

B

C B A

C B D

D

A

C D A

C D B

B

A

D A B

D A C

C

B

D B A

D B C

C

A

D C A

D C B

B

A

Order Matters!

Toy example to
make initial
observation

Find Permutations

!38

A B C

A B C

A B D

D

D

C

A C B

A C D

D

B

A D B

A D C

C

B

B A C

B A D

D

C

B C A

B C D

D

A

B D A

B D C

C

A

C A B

C A D

D

B

C B A

C B D

D

A

C D A

C D B

B

A

D A B

D A C

C

B

D B A

D B C

C

A

D C A

D C B

B

A

Find Permutations

!39

A B C

A B C

A B D

D

D

C

A C B

A C D

D

B

A D B

A D C

C

B

B A C

B A D

D

C

B C A

B C D

D

A

B D A

B D C

C

A

C A B

C A D

D

B

C B A

C B D

D

A

C D A

C D B

B

A

D A B

D A C

C

B

D B A

D B C

C

A

D C A

D C B

B

A

Find Permutations

!40

A B C

A B C

A B D

D

D

C

A C B

A C D

D

B

A D B

A D C

C

B

B A C

B A D

D

C

B C A

B C D

D

A

B D A

B D C

C

A

C A B

C A D

D

B

C B A

C B D

D

A

C D A

C D B

B

A

D A B

D A C

C

B

D B A

D B C

C

A

D C A

D C B

B

A

Find Permutations

!41

A B C

A B C

A B D

D

D

C

A C B

A C D

D

B

A D B

A D C

C

B

B A C

B A D

D

C

B C A

B C D

D

A

B D A

B D C

C

A

C A B

C A D

D

B

C B A

C B D

D

A

C D A

C D B

B

A

D A B

D A C

C

B

D B A

D B C

C

A

D C A

D C B

B

A

Find Permutations

!42

A B C

A B C

A B D

D

D

C

A C B

A C D

D

B

A D B

A D C

C

B

B A C

B A D

D

C

B C A

B C D

D

A

B D A

B D C

C

A

C A B

C A D

D

B

C B A

C B D

D

A

C D A

C D B

B

A

D A B

D A C

C

B

D B A

D B C

C

A

D C A

D C B

B

A

Find Permutations

!43

A B C

A B C

A B D

D

D

C

A C B

A C D

D

B

A D B

A D C

C

B

B A C

B A D

D

C

B C A

B C D

D

A

B D A

B D C

C

A

C A B

C A D

D

B

C B A

C B D

D

A

C D A

C D B

B

A

D A B

D A C

C

B

D B A

D B C

C

A

D C A

D C B

B

A

Find Permutations

!44

A B C

A B C

A B D

D

D

C

A C B

A C D

D

B

A D B

A D C

C

B

B A C

B A D

D

C

B C A

B C D

D

A

B D A

B D C

C

A

C A B

C A D

D

B

C B A

C B D

D

A

C D A

C D B

B

A

D A B

D A C

C

B

D B A

D B C

C

A

D C A

D C B

B

A

Find Permutations

!45

A B C

A B C

A B D

D

D

C

A C B

A C D

D

B

A D B

A D C

C

B

B A C

B A D

D

C

B C A

B C D

D

A

B D A

B D C

C

A

C A B

C A D

D

B

C B A

C B D

D

A

C D A

C D B

B

A

D A B

D A C

C

B

D B A

D B C

C

A

D C A

D C B

B

A

Find Permutations

!46

A B C

A B C

A B D

D

D

C

A C B

A C D

D

B

A D B

A D C

C

B

B A C

B A D

D

C

B C A

B C D

D

A

B D A

B D C

C

A

C A B

C A D

D

B

C B A

C B D

D

A

C D A

C D B

B

A

D A B

D A C

C

B

D B A

D B C

C

A

D C A

D C B

B

A

Lock the first letter 
For each letter you

lock 
Permute the rest 

 

Find Permutations

!47

A B C

A B C

A B D

D

D

C

A C B

A C D

D

B

A D B

A D C

C

B

B A C

B A D

D

C

B C A

B C D

D

A

B D A

B D C

C

A

C A B

C A D

D

B

C B A

C B D

D

A

C D A

C D B

B

A

D A B

D A C

C

B

D B A

D B C

C

A

D C A

D C B

B

A

Lock the first letter 
For each letter you

lock
Permute the rest 

DECISION 
RECURSION

Find Permutations

!48

A B C

B C A C A B

C B C A B A

A Decision Tree

A

B C

B

A C

C

A B

ABC ACB BAC BCA CAB CBA
C B C A B A

/**
 Prints permutations of a string
 @param str the string to be permuted
 @param first index of the leftmost character in str substring to be permuted
 @param last index of the rightmost character in str substring to be permuted
 */
void permuteStr(string & str, int first, int last)
{
 if (first == last)
 cout << str << endl; //obtained one permutation to print
 else
 {
 for (int i = first; i <= last; i++)
 {
 swap(str[first],str[i]);//swap other characters with current first
 permuteStr(str, first+1, last);
 swap(str[first],str[i]); //restore first char
 }
 }
}

!49

ABC 
BAC
CBA

/**
 Prints permutations of a string
 @param str the string to be permuted
 @param first index of the leftmost character in str substring to be permuted
 @param last index of the rightmost character in str substring to be permuted
 */
void permuteStr(string & str, int first, int last)
{
 if (first == last)
 cout << str << endl; //obtained one permutation to print
 else
 {
 for (int i = first; i <= last; i++)
 {
 swap(str[first],str[i]);//swap other characters with current first
 permuteStr(str, first+1, last);
 swap(str[first],str[i]); //restore first char
 }
 }
}

!50

 i=1, first=0

ABC 

/**
 Prints permutations of a string
 @param str the string to be permuted
 @param first index of the leftmost character in str substring to be permuted
 @param last index of the rightmost character in str substring to be permuted
 */
void permuteStr(string & str, int first, int last)
{
 if (first == last)
 cout << str << endl; //obtained one permutation to print
 else
 {
 for (int i = first; i <= last; i++)
 {
 swap(str[first],str[i]);//swap other characters with current first
 permuteStr(str, first+1, last);
 swap(str[first],str[i]); //restore first char
 }
 }
}

!51

BAC

 i=1, first=0

/**
 Prints permutations of a string
 @param str the string to be permuted
 @param first index of the leftmost character in str substring to be permuted
 @param last index of the rightmost character in str substring to be permuted
 */
void permuteStr(string & str, int first, int last)
{
 if (first == last)
 cout << str << endl; //obtained one permutation to print
 else
 {
 for (int i = first; i <= last; i++)
 {
 swap(str[first],str[i]);//swap other characters with current first
 permuteStr(str, first+1, last);
 swap(str[first],str[i]); //restore first char
 }
 }
}

!52

BAC

 i=1, first=0

/**
 Prints permutations of a string
 @param str the string to be permuted
 @param first index of the leftmost character in str substring to be permuted
 @param last index of the rightmost character in str substring to be permuted
 */
void permuteStr(string & str, int first, int last)
{
 if (first == last)
 cout << str << endl; //obtained one permutation to print
 else
 {
 for (int i = first; i <= last; i++)
 {
 swap(str[first],str[i]);//swap other characters with current first
 permuteStr(str, first+1, last);
 swap(str[first],str[i]); //restore first char
 }
 }
}

!53

BAC

 i=1, first=1

/**
 Prints permutations of a string
 @param str the string to be permuted
 @param first index of the leftmost character in str substring to be permuted
 @param last index of the rightmost character in str substring to be permuted
 */
void permuteStr(string & str, int first, int last)
{
 if (first == last)
 cout << str << endl; //obtained one permutation to print
 else
 {
 for (int i = first; i <= last; i++)
 {
 swap(str[first],str[i]);//swap other characters with current first
 permuteStr(str, first+1, last);
 swap(str[first],str[i]); //restore first char
 }
 }
}

!54

BAC

 i=1, first=1

/**
 Prints permutations of a string
 @param str the string to be permuted
 @param first index of the leftmost character in str substring to be permuted
 @param last index of the rightmost character in str substring to be permuted
 */
void permuteStr(string & str, int first, int last)
{
 if (first == last)
 cout << str << endl; //obtained one permutation to print
 else
 {
 for (int i = first; i <= last; i++)
 {
 swap(str[first],str[i]);//swap other characters with current first
 permuteStr(str, first+1, last);
 swap(str[first],str[i]); //restore first char
 }
 }
}

!55

BAC

 i=1, first=1

/**
 Prints permutations of a string
 @param str the string to be permuted
 @param first index of the leftmost character in str substring to be permuted
 @param last index of the rightmost character in str substring to be permuted
 */
void permuteStr(string & str, int first, int last)
{
 if (first == last)
 cout << str << endl; //obtained one permutation to print
 else
 {
 for (int i = first; i <= last; i++)
 {
 swap(str[first],str[i]);//swap other characters with current first
 permuteStr(str, first+1, last);
 swap(str[first],str[i]); //restore first char
 }
 }
}

!56

BAC

 i=2, first=2

/**
 Prints permutations of a string
 @param str the string to be permuted
 @param first index of the leftmost character in str substring to be permuted
 @param last index of the rightmost character in str substring to be permuted
 */
void permuteStr(string & str, int first, int last)
{
 if (first == last)
 cout << str << endl; //obtained one permutation to print
 else
 {
 for (int i = first; i <= last; i++)
 {
 swap(str[first],str[i]);//swap other characters with current first
 permuteStr(str, first+1, last);
 swap(str[first],str[i]); //restore first char
 }
 }
}

!57

BAC

 i=1, first=1

/**
 Prints permutations of a string
 @param str the string to be permuted
 @param first index of the leftmost character in str substring to be permuted
 @param last index of the rightmost character in str substring to be permuted
 */
void permuteStr(string & str, int first, int last)
{
 if (first == last)
 cout << str << endl; //obtained one permutation to print
 else
 {
 for (int i = first; i <= last; i++)
 {
 swap(str[first],str[i]);//swap other characters with current first
 permuteStr(str, first+1, last);
 swap(str[first],str[i]); //restore first char
 }
 }
}

!58

BCA

 i=2, first=1

/**
 Prints permutations of a string
 @param str the string to be permuted
 @param first index of the leftmost character in str substring to be permuted
 @param last index of the rightmost character in str substring to be permuted
 */
void permuteStr(string & str, int first, int last)
{
 if (first == last)
 cout << str << endl; //obtained one permutation to print
 else
 {
 for (int i = first; i <= last; i++)
 {
 swap(str[first],str[i]);//swap other characters with current first
 permuteStr(str, first+1, last);
 swap(str[first],str[i]); //restore first char
 }
 }
}

!59

BCA

 i=2, first=1

/**
 Prints permutations of a string
 @param str the string to be permuted
 @param first index of the leftmost character in str substring to be permuted
 @param last index of the rightmost character in str substring to be permuted
 */
void permuteStr(string & str, int first, int last)
{
 if (first == last)
 cout << str << endl; //obtained one permutation to print
 else
 {
 for (int i = first; i <= last; i++)
 {
 swap(str[first],str[i]);//swap other characters with current first
 permuteStr(str, first+1, last);
 swap(str[first],str[i]); //restore first char
 }
 }
}

!60

BCA

 i=2, first=2

/**
 Prints permutations of a string
 @param str the string to be permuted
 @param first index of the leftmost character in str substring to be permuted
 @param last index of the rightmost character in str substring to be permuted
 */
void permuteStr(string & str, int first, int last)
{
 if (first == last)
 cout << str << endl; //obtained one permutation to print
 else
 {
 for (int i = first; i <= last; i++)
 {
 swap(str[first],str[i]);//swap other characters with current first
 permuteStr(str, first+1, last);
 swap(str[first],str[i]); //restore first char
 }
 }
}

!61

BAC

 i=2, first=1

/**
 Prints permutations of a string
 @param str the string to be permuted
 @param first index of the leftmost character in str substring to be permuted
 @param last index of the rightmost character in str substring to be permuted
 */
void permuteStr(string & str, int first, int last)
{
 if (first == last)
 cout << str << endl; //obtained one permutation to print
 else
 {
 for (int i = first; i <= last; i++)
 {
 swap(str[first],str[i]);//swap other characters with current first
 permuteStr(str, first+1, last);
 swap(str[first],str[i]); //restore first char
 }
 }
}

!62

ABC

 i=1, first=0

/**
 Prints permutations of a string
 @param str the string to be permuted
 @param first index of the leftmost character in str substring to be permuted
 @param last index of the rightmost character in str substring to be permuted
 */
void permuteStr(string & str, int first, int last)
{
 if (first == last)
 cout << str << endl; //obtained one permutation to print
 else
 {
 for (int i = first; i <= last; i++)
 {
 swap(str[first],str[i]);//swap other characters with current first
 permuteStr(str, first+1, last);
 swap(str[first],str[i]); //restore first char
 }
 }
}

!63

ABC

 i=2, first=0

Recursive Decision Tree

void exploreFrom(current_state, decisions_made) {
 if (all decisions have been made) { //base case
 output the result of the decisions we’ve made;
 } else {
 for (each decision we can make) {
 exploreFrom(result of making that decision,
 decisions_made + this_decision);
 }
 }
}

!64

Generally, if you can express a problem
solution with a decision tree you can
translate it into a recursive algorithm

Find Combinations

!65

A B C D

A A B

A C

A D

B C

B D

C D

B

C

D

A B C

A B D

A C D

A B C D{ }

B C D

Order does
Not matter!

Find Combinations of size 2

!66

A B C D

A A B

A C

A D

B C

B D

C D

B

C

D

A B C

A B D

A C D

A B C D{ }

B C D

Order does
Not matter!

Combinations (n choose k)

!67

One way to choose 5 out of 9 is to
Exclude 1 and choose 5 out of 8

Start with toy problem
to make observation

Combinations (n choose k)

!68

One way to choose 5 out of 9 is to
Exclude 1 and choose 5 out of 8

Combinations (n choose k)

!69

One way to choose 5 out of 9 is to
Exclude 1 and choose 5 out of 8

Combinations (n choose k)

!70

One way to choose 5 out of 9 is to
Exclude 1 and choose 5 out of 8

Smaller problem!
n-1

Combinations (n choose k)

!71

One way to choose 5 out of 9 is to
Exclude 1 and choose 5 out of 8

Combinations (n choose k)

!72

One way to choose 5 out of 9 is to
Exclude 1 and choose 5 out of 8

Combinations (n choose k)

!73

One way to choose 5 out of 9 is to
Exclude 1 and choose 5 out of 8

Combinations (n choose k)

!74

One way to choose 5 out of 9 is to
Include 1 and choose 4 out of 8

Need to make another
observation

Combinations (n choose k)

!75

One way to choose 5 out of 9 is to
Include 1 and choose 4 out of 8

Combinations (n choose k)

!76

One way to choose 5 out of 9 is to
Include 1 and choose 4 out of 8

Combinations (n choose k)

!77

One way to choose 5 out of 9 is to
Include 1 and choose 4 out of 8

Count Combinations

int countCombinations(int n, int k)
{
 if ((k == 0) || (k == n))
 return 1;
 else
 return countCombinations(n-1, k-1) +
 countCombinations(n-1, k);
}

!78

Recursive algorithm for
computing binomial coefficients

Include one Exclude
 one

How can you be sure it works???

You come up with an algorithm

You implement it

You test it

How can you be sure it will ALWAYS work???

!79

How can you be sure it works???

You come up with an algorithm

You implement it

You test it

How can you be sure it will ALWAYS work???

PROVE IT!!!

!80

Recursion and Induction

Principle of Mathematical Induction: 

Suppose you want to prove that a statement P(n) about an integer n
is true for every positive integer n.
 
To prove that P(n) is true for all n ≥ 1, do the following two steps:
- Base Step: Prove that P(1) is true.
- Inductive Step: Let k ≥ 1. Assume P(k) is true, and prove that
P(k + 1) is also true.

!81

//a: nonzero real number, n: nonnegative integer  
power(a, n)  
{  

if (n = 0)  
return 1  

else  
return a * power(a, n − 1)  

}  

Prove by mathematical induction on n that the algorithm above is correct.
We will show P(n) is true for all n ≥ 0, where  
P(n): For all nonzero real numbers a, power(a, n) correctly computes
an.

!82

Recursion and Induction

Base step: If n = 0, the first step of the algorithm tells us that
power(a, 0)=1. This is correct because a0 = 1 for every nonzero
real number a, so P(0) is true.

Inductive step:  
Let k ≥ 0.  
Inductive hypothesis: power(a, k) = ak , for all a != 0.  
We must show next that power(a, k+1)= ak+1 .  
Since k + 1 > 0 the algorithm sets  
power(a, k + 1) = a * power(a, k)  
By inductive hypotheses power(a, k) = ak  
so power(a, k + 1) = a* power(a, k) = a * ak = ak+1

!83

Recursion and Induction

Exam Drill

Write a recursive function that returns true if the input
string is a palindrome (same when reversed)

!84

Exam Drill

Write a recursive function that returns true if the input
string is a palindrome (same when reversed)

bool isPalindrome(string s)
{
 if(s.length() == 0 || s.length() == 1) //base case
 return true; //empty string or string of size 1 are palindrome
 if(s[0] == s[s.length()-1]) //if first and last char are same
 //check substring leaving out first and last character
 return isPalindrome(s.substr(1, s.length()-2));

 return false; //not palindrome
}

!85

Exam Drill

Write a recursive function for the fibonacci numbers
where f(n) = f(n-1) + f(n-2)

!86

Exam Drill

Write a recursive function for the fibonacci numbers
where f(n) = f(n-1) + f(n-2)

int fib(int n)
{
 if (n <= 1)//base case
 return n;
 return fib(n-1) + fib(n-2);
}

!87

Exam Drill

Write a recursive function to find the max value in an array
of integers

!88

Exam Drill

Write a recursive function to find the max value in an array
of integers

int findMax(int* a, int index) {
 if (index > 0)
 return max(a[index], findMax(a, index-1));
 else
 return a[0];
}

!89

Exam Drill

Write a recursive function that finds a particular item
in a sorted array (we will look at this algorithm soon)

!90

