
Algorithm Efficiency
(More formally)

Tiziana Ligorio
!1

Today’s Plan

Algorithm Efficiency

!2

What is CSCI 235?
Programming => Software Analysis and Design 
Expected professional and responsible attitude

Think like a Computer Scientist:

Design and maintain complex programs

Software Engineering, Abstraction, OOP

Design and represent data and its management

Abstract Data Types

Implement data representation and operations

Data Structures

Algorithms

Analyze Algorithms and their Efficiency

!3

Algorithm Efficiency

!4

Scenario 1

You are using an application and suddenly it stalls…
whatever it is doing it’s taking way too long…  

!5

Scenario 1

You are using an application and suddenly it stalls…
whatever it is doing it’s taking way too long…

how “long” does that have to be for you to become
ridiculously frustrated?

!6

Scenario 1

You are using an application and suddenly it stalls…
whatever it is doing it’s taking way too long…

how “long” does that have to be for you to become
ridiculously frustrated?

… probably not that long

!7

!8

Scenario 2
At your next super high-end job with the company/research-
center of your dreams you are given a very difficult problem
to solve.

You work hard on it, find a solution, code it up and it works!!!!  
 
Proudly you present it the next day
but…

Given some new (large) input it keeps stalling…

Scenario 2
At your next super high-end job with the company/research-
center of your dreams you are given a very difficult problem
to solve.

You work hard on it, find a solution, code it up and it works!!!!  
 
Proudly you present it the next day
but…

Given some new (large) input it keeps stalling…

Well… sorry but your solution is no good!!!

!9

 

You need to have a means to estimate/predict the
efficiency of your algorithms on unknown input.

!10

What is a good solution?

How can we compare solutions
to a problem? (Algorithms)

!11

What is a good solution?

!12

Correct

If it’s not
correct it is not
a solution at all

What is a good solution?

!13

Correct Efficient

Time Space

What is a good solution?

!14

Correct Efficient

Time Space
We are going to
focus on time

How can we measure time
efficiency?

!15

How can we measure time
efficiency?

!16

Runtime?

Problems with actual  
runtime for comparison

What computer are you using?  
 Runtime is highly sensitive to hardware

!17

Problems with actual  
runtime for comparison

What computer are you using?  
 Runtime is highly sensitive to hardware

What implementation are you using?  
 Implementation details may affect runtime but are
 not reflective of algorithm efficiency

!18

How should we measure
execution time?

!19

How should we measure
execution time?

!20

Number of “steps” or “operations”
as a function of the size of the input

Constant

Variable

!21

template<typename ItemType>
void List<ItemType>::traverse()
{
 for(Node<ItemType>* ptr = first; ptr != nullptr; ptr = ptr->getNext())
 {
 cout << ptr->getItem() << endl;
 }
}

template<typename ItemType>
void List<ItemType>::traverse()
{
 for(Node<ItemType>* ptr = first; ptr != nullptr; ptr = ptr->getNext())
 {
 cout << ptr->getItem() << endl;
 }
}

!22

What are the operations? 
Let n be the number of nodes

!23

1 node instantiation and assignment
upon entering the loop

What are the operations? 
Let n be the number of nodes

template<typename ItemType>
void List<ItemType>::traverse()
{
 for(Node<ItemType>* ptr = first; ptr != nullptr; ptr = ptr->getNext())
 {
 cout << ptr->getItem() << endl;
 }
}

!24

1 node instantiation and assignment
upon entering the loop

pointer comparison

What are the operations? 
Let n be the number of nodes

template<typename ItemType>
void List<ItemType>::traverse()
{
 for(Node<ItemType>* ptr = first; ptr != nullptr; ptr = ptr->getNext())
 {
 cout << ptr->getItem() << endl;
 }
}

!25

1 node instantiation and assignment
upon entering the loop

pointer comparison

call to getNext()

What are the operations? 
Let n be the number of nodes

template<typename ItemType>
void List<ItemType>::traverse()
{
 for(Node<ItemType>* ptr = first; ptr != nullptr; ptr = ptr->getNext())
 {
 cout << ptr->getItem() << endl;
 }
}

!26

1 node instantiation and assignment
upon entering the loop

pointer comparison

call to getNext()

pointer assignment

What are the operations? 
Let n be the number of nodes

template<typename ItemType>
void List<ItemType>::traverse()
{
 for(Node<ItemType>* ptr = first; ptr != nullptr; ptr = ptr->getNext())
 {
 cout << ptr->getItem() << endl;
 }
}

!27

1 node instantiation and assignment
upon entering the loop

pointer comparison

call to getNext()

pointer assignment

call to getItem()

write to the console

What are the operations? 
Let n be the number of nodes

template<typename ItemType>
void List<ItemType>::traverse()
{
 for(Node<ItemType>* ptr = first; ptr != nullptr; ptr = ptr->getNext())
 {
 cout << ptr->getItem() << endl;
 }
}

!28

What are the operations? 
Let n be the number of nodes

K0

K1
K2

K3
K4

1 node instantiation and assignment
upon entering the loop

pointer comparison

call to getNext()

pointer assignment

call to getItem()

write to the consoleK5

template<typename ItemType>
void List<ItemType>::traverse()
{
 for(Node<ItemType>* ptr = first; ptr != nullptr; ptr = ptr->getNext())
 {
 cout << ptr->getItem() << endl;
 }
}

!29

What are the operations? 
Let n be the number of nodes

Operations = K0 + n(K1+K2+K3+K4+K5)

1 node instantiation and assignment
upon entering the loop

pointer comparison

call to getNext()

pointer assignment

call to getItem()

write to the console

K0

K1
K2

K3
K4

K5

template<typename ItemType>
void List<ItemType>::traverse()
{
 for(Node<ItemType>* ptr = first; ptr != nullptr; ptr = ptr->getNext())
 {
 cout << ptr->getItem() << endl;
 }
}

!30

What are the operations? 
Let n be the number of nodes

Operations = K0 + nK6

1 node instantiation and assignment
upon entering the loop

pointer comparison

call to getNext()

pointer assignment

call to getItem()

write to the console

K0

K1
K2

K3
K4

K5

template<typename ItemType>
void List<ItemType>::traverse()
{
 for(Node<ItemType>* ptr = first; ptr != nullptr; ptr = ptr->getNext())
 {
 cout << ptr->getItem() << endl;
 }
}

Lecture Activity

bool linearSearch(const string& str, char ch)
{  

 for (int i = 0; i < str.length(); i++)
 {
 if (str[i] == ch) {
 return true;
 }
 }
 return false;
}

!31

Identify the steps and write down an expression for execution time

Lecture Activity

bool linearSearch(const string& str, char ch)
{  

 for (int i = 0; i < str.length(); i++)
 {
 if (str[i] == ch) {
 return true;
 }
 }
 return false;
}

!32

Identify the steps and write down an expression for execution time

Was this tricky?

bool linearSearch(const string& str, char ch)
{  

// 1 int assignment upon entering loop
 for (int i = 0; i < str.length(); i++)
 { // call to length() and increment
 if (str[i] == ch) { // Comparisons
 return true; //return operation, maybe
 }
 }
 return false; //return operation, maybe
}

!33

n here is the length of the string

bool linearSearch(const string& str, char ch)
{  

// 1 int assignment upon entering loop
 for (int i = 0; i < str.length(); i++)
 { // call to length() and increment
 if (str[i] == ch) { // Comparisons
 return true; //return operation, maybe
 }
 }
 return false; //return operation, maybe
}

!34

n here is the length of the string

Maybe stop in
the middle

Maybe stop at
end of loop

bool linearSearch(const string& str, char ch)
{
 for (int i = 0; i < str.length(); i++)
 {
 if (str[i] == ch) {
 return true;
 }
 }
 return false;
}

!35

Execution completes in at most:  
k0n+k1 operations

In the
WORST CASE

n here is the length of the string

Types of Analysis
Best case analysis: running time under best input (e.g., in linear
search item we are looking for is the first) - not reflective of overall
performance)

Average case analysis: assumes equal probability of input (usually
not the case)

Expected case analysis: assumes probability of occurrence of input
is known or can be estimated, and if it were possible may be too
expensive

Worst case analysis: running time under worst input, gives upper
bound, it can’t get worse, good for sleeping well at night!

!36

bool linearSearch(const string& str, char ch)
{
 for (int i = 0; i < str.length(); i++)
 {
 if (str[i] == ch) {
 return true;
 }
 }
 return false;
}

!37

Execution completes in at most:  
k0n+k1 operations

Some constant number
of operations repeated

inside the loop

Some constant number
of operations performed

outside the loop

n here is the length of the string

bool linearSearch(const string& str, char ch)
{
 for (int i = 0; i < str.length(); i++)
 {
 if (str[i] == ch) {
 return true;
 }
 }
 return false;
}

!38

Execution completes in at most:  
k0n+k1 operations

Some constant number
of operations repeated

inside the loop

Some constant number
of operations performed

outside the loop

The number of times
the loop is repeated,
i.e. the size of str

n here is the length of the string

Observation

Don’t need to explicitly compute the constants ki  

4n + 1000  

 n + 137

Dominant term is sufficient to explain overall
behavior (in this case linear)

!39

Big-O Notation

Ignores everything except dominant term

Examples: 
 T(n) = 4n + 4 = O(n)  
 T(n) = 164n + 35 = O(n)  
 T(n) = n2 + 35n + 5 = O(n2) 
 T(n) = 2n3 + 98n2 + 210 = O(n3)  
 T(n) = 2n + 5 = O(2n)

!40

Notation: describes the overall
behavior

Big-O Notation

Ignores everything except dominant term

Examples: 
 T(n) = 4n + 4 = O(n)  
 T(n) = 164n + 35 = O(n)  
 T(n) = n2 + 35n + 5 = O(n2) 
 T(n) = 2n3 + 98n2 + 210 = O(n3)  
 T(n) = 2n + 5 = O(2n)

!41

T(n) is the running time

n is the size of the input

Notation: describes the overall
behavior

Big-O Notation

Ignores everything except dominant term

Examples: 
 T(n) = 4n + 4 = O(n)  
 T(n) = 164n + 35 = O(n)  
 T(n) = n2 + 35n + 5 = O(n2) 
 T(n) = 2n3 + 98n2 + 210 = O(n3)  
 T(n) = 2n + 5 = O(2n)

!42

Big-O describes the overall
behavior

Let T(n) be the running time of an
algorithm measured as number of

operations given input of size n.  
T(n) is O(f(n))

if it grows no faster than f(n)

Big-O Notation

Ignores everything except dominant term

Examples: 
 T(n) = 4n + 4 = O(n)  
 T(n) = 164n + 35 = O(n)  
 T(n) = n2 + 35n + 5 = O(n2) 
 T(n) = 2n3 + 98n2 + 210 = O(n3)  
 T(n) = 2n + 5 = O(2n)

!43

Big-O describes the overall
behavior

But
164n+35 > n

Let T(n) be the running time of an
algorithm measured as number of

operations given input of size n.  
T(n) is O(f(n))

if it grows no faster than f(n)

Big-O Notation

Ignores everything except dominant term

Examples: 
 T(n) = 4n + 4 = O(n)  
 T(n) = 164n + 35 = O(n)  
 T(n) = n2 + 35n + 5 = O(n2) 
 T(n) = 2n3 + 98n2 + 210 = O(n3)  
 T(n) = 2n + 5 = O(2n)

!44

Notation: describes the overall
behavior

More formally: 
T(n) is O(f(n))

if there exist constants k and n0
such that for all n ≥ n0

 T(n) ≤ kf(n)

!45

More formally: 
T(n) is O(f(n))

if there exist constants k and n0
such that for all n ≥ n0,

 T(n) ≤ kf(n)

n0

k = 3

T(n) = n2 - 3n + 10
T(n) is O(n2)

For k=3 and n≥1.5

!46

More formally: 
T(n) is O(f(n))

if there exist constants k and n0
such that for all n ≥ n0,

 T(n) ≤ kf(n)

n0

k = 3

T(n) = n2 - 3n + 10
T(n) is O(n2)

For k=3 and n≥1.5

This is why we can
look at dominant

term only to explain
behavior

Big-O describes the overall growth rate of an
algorithms for large n

!47

Proving Big-O Relationship

Apply definition of Big-O to prove that T(n) is O(f(n))
for particular functions T and f

Do so by choosing k and n0 s.t. for all n ≥ n0,  
T(n) ≤ kf(n)

!48

Example:  
Suppose T(n) = (n+1)2  
We can say that T(n) is O(n2)

To prove it must find k and n0 s.t. for all n ≥ n0 ,  
(n+1)2 ≤ kn2  

 
 

 

Proving Big-O Relationship

!49

Example:  
Suppose T(n) = (n+1)2  
We can say that T(n) is O(n2)

To prove it must find k and n0 s.t. for all n ≥ n0,  
(n+1)2 ≤ kn2  

Expand (n+1)2 = n2 + 2n + 1 
Observe that, as long as n ≥1, n ≤ n2 and 1 ≤ n2 

 

Proving Big-O Relationship

!50

f(n)

Proving Big-O Relationship

Example:  
Suppose T(n) = (n+1)2  
We can say that T(n) is O(n2)

To prove it must find k and n0 s.t. for all n ≥ n0,  
(n+1)2 ≤ kn2  

Expand (n+1)2 = n2 + 2n + 1 
Observe that, as long as n ≥1, n ≤ n2 and 1 ≤ n2 

Thus if we choose n0 =1 and k = 4 we have 
n2 + 2n + 1 ≤ n2 + 2n2 + n2 = 4n2

!51
T(n) k

Proving Big-O Relationship
Example:  
Suppose T(n) = (n+1)2  
We can say that T(n) is O(n2)

To prove it must find k and n0 s.t. for
all n ≥ n0,  
(n+1)2 ≤ kn2 

Expand (n+1)2 = n2 + 2n + 1  
Observe that, as long as n ≥1, n ≤ n2
and 1 ≤ n2  

Thus if we choose n0 =1 and k = 4 we
have 
n2 + 2n + 1 ≤ n2 + 2n2 + n2 = 4n2

!52

Proving Big-O Relationship

Not Unique:  
Could also choose n0 =3 and
k = 2 because 
(n+1)2 ≤ 2n2 for all n ≥ 3

For proof one is enough

!53

A visual comparison of
growth rates

!54

!55

0

2

4

6

8

10

12

14

16

Growth Rates, Part One

O(1)

O(log n)

O(n)

!56

0

50

100

150

200

250

Growth Rates, Part Two

O(n)

O(n log n)

O(n²)

!57

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

Growth Rates, Part Three

O(n²)

O(n³)

O(2ⁿ)

!58

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

To Give You A Better Sense...

O(1)

O(log n)

O(n)

O(n log n)

O(n²)

O(n³)

O(2ⁿ)

Tight is more meaningful

If T(n) is O(n) 
It is also true that T(n) is O(n3) 
And it is also true that T(n) is O(2n)  
But what does it mean???

The closest Big-O is the most descriptive of the
overall worst-case behavior

!59

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

To Give You A Better Sense...

O(1)

O(log n)

O(n)

O(n log n)

O(n²)

O(n³)

O(2ⁿ)

Big-O: upper bound 
 T(n) is O(f(n)) 
 if there exist constants k and n0 such that for all n ≥ n0 T(n) ≤ k f(n)  
 Grows no faster than f(n)

Tightening the bounds

!60

Tightening the bounds
Big-O: upper bound  
 T(n) is O(f(n)) 
 if there exist constants k and n0 such that for all n ≥ n0 T(n) ≤ k f(n)  
 Grows no faster than f(n)

Omega: lower bound 
 T(n) is Ω(f(n)) 
 if there exist constants k and n0 such that for all n ≥ n0 T(n) ≥ k f(n)  
 Grows at least as fast as f(n)

!61

Tightening the bounds
Theta: tight bound 
 T(n) is Θ(f(n)) 
 Grows at the same rate as f(n) : iff both T(n) is O(f(n)) and Ω(f(n)) 
 
 
 
 
 
 
 
 

!62

A numerical comparison of
growth rates

!63

!64

10 100 1,000 10,000 100,000 1,000,000

1 1 1 1 1 1 1

log2n 3 6 9 13 16 19

n 10 102 103 104 105 106

n * log2n 30 664 9,965 105 106 107

n2 102 104 106 108 1010 1012

n3 103 106 109 1012 1015 1018

2n 103 1030 10301 103,010 1030,103 10301,030

n
f(n)

What does Big-O describe?

“Long term” behavior of a function  
 
 If algorithm A has runtime O(n) and algorithm B
 has runtime O(n2), for large inputs A will
 always be faster. 
 
 If algorithm A has runtime O(n), doubling the size
 of the input will double the runtime

!65

Compare behavior
of 2 algorithms

Analyze algorithm behavior
with growing input

What can’t Big-O describe?

The actual runtime of an algorithm  
 10100n = O(n)  
 10-100n = O(n)

How an algorithm behaves on small input 
 n3 = O(n3) 
 106 = O(1)

!66

To summarize Big-O

It is a means of describing the growth rate of a
function

It ignores all but the dominant term

It ignores constants

Allows for quantitative ranking of algorithms

Allows for quantitative reasoning about algorithms

!67

