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Today’s Plan

Algorithm Efficiency
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What is CSCI 235?
Programming => Software Analysis and Design 
Expected professional and responsible attitude 

Think like a Computer Scientist: 

Design and maintain complex programs  

Software Engineering, Abstraction, OOP 

Design and represent data and its management  

Abstract Data Types 

Implement data representation and operations 

Data Structures  

Algorithms 

Analyze  Algorithms and their Efficiency
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Algorithm Efficiency
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Scenario 1

You are using an application and suddenly it stalls… 
whatever it is doing it’s taking way too long…  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Scenario 1

You are using an application and suddenly it stalls… 
whatever it is doing it’s taking way too long…  

how “long” does that have to be for you to become 
ridiculously frustrated?  
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Scenario 1

You are using an application and suddenly it stalls… 
whatever it is doing it’s taking way too long…  

how “long” does that have to be for you to become 
ridiculously frustrated?  

… probably not that long
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Scenario 2
At your next super high-end job with the company/research-
center of your dreams you are given a very difficult problem 
to solve.  

You work hard on it, find a solution, code it up and it works!!!!  
 
Proudly you present it the next day 
but…   

Given some new (large) input it keeps stalling…  



Scenario 2
At your next super high-end job with the company/research-
center of your dreams you are given a very difficult problem 
to solve.  

You work hard on it, find a solution, code it up and it works!!!!  
 
Proudly you present it the next day 
but…   

Given some new (large) input it keeps stalling…  

Well… sorry but your solution is no good!!!
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You need to have a means to estimate/predict the 
efficiency of your algorithms on unknown input.
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What is a good solution? 

How can we compare solutions 
to a problem? (Algorithms)
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What is a good solution?
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Correct

If it’s not 
correct it is not 
a solution at all



What is a good solution?
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Correct Efficient

Time Space



What is a good solution?
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Correct Efficient

Time Space
We are going to 
focus on time



How can we measure time 
efficiency?
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How can we measure time 
efficiency?
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Runtime?



Problems with actual  
runtime for comparison

What computer are you using?  
 Runtime is highly sensitive to hardware 
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Problems with actual  
runtime for comparison

What computer are you using?  
 Runtime is highly sensitive to hardware 

What implementation are you using?  
 Implementation details may affect runtime but are  
 not reflective of algorithm efficiency 
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How should we measure 
execution time?
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How should we measure 
execution time?
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Number of “steps” or  “operations” 
as a function of the size of the input

Constant

Variable
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template<typename ItemType>
void List<ItemType>::traverse()
{
    for(Node<ItemType>*  ptr = first; ptr != nullptr; ptr = ptr->getNext())
    {
        cout << ptr->getItem() << endl;
    }
}



template<typename ItemType>
void List<ItemType>::traverse()
{
    for(Node<ItemType>*  ptr = first; ptr != nullptr; ptr = ptr->getNext())
    {
        cout << ptr->getItem() << endl;
    }
}
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What are the operations? 
Let n be the number of nodes
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1 node instantiation and assignment 
upon entering the loop

What are the operations? 
Let n be the number of nodes

template<typename ItemType>
void List<ItemType>::traverse()
{
    for(Node<ItemType>*  ptr = first; ptr != nullptr; ptr = ptr->getNext())
    {
        cout << ptr->getItem() << endl;
    }
}
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1 node instantiation and assignment 
upon entering the loop

pointer comparison

What are the operations? 
Let n be the number of nodes

template<typename ItemType>
void List<ItemType>::traverse()
{
    for(Node<ItemType>*  ptr = first; ptr != nullptr; ptr = ptr->getNext())
    {
        cout << ptr->getItem() << endl;
    }
}
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1 node instantiation and assignment 
upon entering the loop

pointer comparison

call to getNext()

What are the operations? 
Let n be the number of nodes

template<typename ItemType>
void List<ItemType>::traverse()
{
    for(Node<ItemType>*  ptr = first; ptr != nullptr; ptr = ptr->getNext())
    {
        cout << ptr->getItem() << endl;
    }
}
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1 node instantiation and assignment 
upon entering the loop

pointer comparison

call to getNext()

pointer assignment

What are the operations? 
Let n be the number of nodes

template<typename ItemType>
void List<ItemType>::traverse()
{
    for(Node<ItemType>*  ptr = first; ptr != nullptr; ptr = ptr->getNext())
    {
        cout << ptr->getItem() << endl;
    }
}
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1 node instantiation and assignment 
upon entering the loop

pointer comparison

call to getNext()

pointer assignment

call to getItem()

write to the console

What are the operations? 
Let n be the number of nodes

template<typename ItemType>
void List<ItemType>::traverse()
{
    for(Node<ItemType>*  ptr = first; ptr != nullptr; ptr = ptr->getNext())
    {
        cout << ptr->getItem() << endl;
    }
}
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What are the operations? 
Let n be the number of nodes

K0

K1
K2

K3
K4

1 node instantiation and assignment 
upon entering the loop

pointer comparison

call to getNext()

pointer assignment

call to getItem()

write to the consoleK5

template<typename ItemType>
void List<ItemType>::traverse()
{
    for(Node<ItemType>*  ptr = first; ptr != nullptr; ptr = ptr->getNext())
    {
        cout << ptr->getItem() << endl;
    }
}
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What are the operations? 
Let n be the number of nodes

Operations = K0 + n(K1+K2+K3+K4+K5)

1 node instantiation and assignment 
upon entering the loop

pointer comparison

call to getNext()

pointer assignment

call to getItem()

write to the console

K0

K1
K2

K3
K4

K5

template<typename ItemType>
void List<ItemType>::traverse()
{
    for(Node<ItemType>*  ptr = first; ptr != nullptr; ptr = ptr->getNext())
    {
        cout << ptr->getItem() << endl;
    }
}
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What are the operations? 
Let n be the number of nodes

Operations = K0 + nK6

1 node instantiation and assignment 
upon entering the loop

pointer comparison

call to getNext()

pointer assignment

call to getItem()

write to the console

K0

K1
K2

K3
K4

K5

template<typename ItemType>
void List<ItemType>::traverse()
{
    for(Node<ItemType>*  ptr = first; ptr != nullptr; ptr = ptr->getNext())
    {
        cout << ptr->getItem() << endl;
    }
}



Lecture Activity

bool linearSearch(const string& str, char ch)
{  

    for (int i = 0; i < str.length(); i++)
    {
        if (str[i] == ch) {
            return true;
        }
    }
    return false;
}
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Identify the steps and write down an expression for execution time 



Lecture Activity

bool linearSearch(const string& str, char ch)
{  

    for (int i = 0; i < str.length(); i++)
    {
        if (str[i] == ch) {
            return true;
        }
    }
    return false;
}
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Identify the steps and write down an expression for execution time 

Was this tricky?



bool linearSearch(const string& str, char ch)
{  

// 1 int assignment upon entering loop
    for (int i = 0; i < str.length(); i++)
    { // call to length() and increment
        if (str[i] == ch) { // Comparisons
            return true; //return operation, maybe
        }
    }
    return false; //return operation, maybe
}

!33

n here is the length of the string



bool linearSearch(const string& str, char ch)
{  

// 1 int assignment upon entering loop
    for (int i = 0; i < str.length(); i++)
    { // call to length() and increment
        if (str[i] == ch) { // Comparisons
            return true; //return operation, maybe
        }
    }
    return false; //return operation, maybe
}
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n here is the length of the string

Maybe stop in 
the middle

Maybe stop at 
end of loop



bool linearSearch(const string& str, char ch)
{
    for (int i = 0; i < str.length(); i++)
    {
        if (str[i] == ch) {
            return true;
        }
    }
    return false;
}
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Execution completes in at most:  
k0n+k1 operations

In the  
WORST CASE 

n here is the length of the string



Types of Analysis 
Best case analysis: running time under best input (e.g., in linear 
search item we are looking for is the first ) -  not reflective of overall 
performance) 

Average case analysis: assumes equal probability of input (usually 
not the case) 

Expected case analysis: assumes probability of occurrence of input 
is known or can be estimated, and if it were possible may be too 
expensive 

Worst case analysis: running time under worst input, gives upper 
bound, it can’t get worse, good for sleeping well at night!
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bool linearSearch(const string& str, char ch)
{
    for (int i = 0; i < str.length(); i++)
    {
        if (str[i] == ch) {
            return true;
        }
    }
    return false;
}

!37

Execution completes in at most:  
k0n+k1 operations

Some constant number 
of operations repeated 

inside the loop

Some constant number 
of operations performed 

outside the loop

n here is the length of the string



bool linearSearch(const string& str, char ch)
{
    for (int i = 0; i < str.length(); i++)
    {
        if (str[i] == ch) {
            return true;
        }
    }
    return false;
}
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Execution completes in at most:  
k0n+k1 operations

Some constant number 
of operations repeated 

inside the loop

Some constant number 
of operations performed 

outside the loop

The number of times 
the loop is repeated, 
i.e. the size of str

n here is the length of the string



Observation

Don’t need to explicitly compute the constants ki  

4n + 1000  

 n + 137

Dominant term  is sufficient to explain overall 
behavior (in this case linear)
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Big-O Notation

Ignores everything except dominant term 

Examples: 
 T(n) = 4n + 4 = O(n)  
 T(n) = 164n + 35 = O(n)  
 T(n) = n2 + 35n + 5 = O(n2) 
 T(n) = 2n3 + 98n2 + 210 = O(n3)  
 T(n) = 2n + 5 = O(2n)

!40

Notation: describes the overall  
behavior



Big-O Notation

Ignores everything except dominant term 

Examples: 
 T(n) = 4n + 4 = O(n)  
 T(n) = 164n + 35 = O(n)  
 T(n) = n2 + 35n + 5 = O(n2) 
 T(n) = 2n3 + 98n2 + 210 = O(n3)  
 T(n) = 2n + 5 = O(2n)
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T(n) is the running time

n is the size of the input

Notation: describes the overall  
behavior



Big-O Notation

Ignores everything except dominant term 

Examples: 
 T(n) = 4n + 4 = O(n)  
 T(n) = 164n + 35 = O(n)  
 T(n) = n2 + 35n + 5 = O(n2) 
 T(n) = 2n3 + 98n2 + 210 = O(n3)  
 T(n) = 2n + 5 = O(2n)
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Big-O describes the overall  
behavior

Let T(n) be the running time of an 
algorithm  measured as number of 

operations given input of size n.  
T(n) is O(f(n))   

if it grows no faster than f(n)



Big-O Notation

Ignores everything except dominant term 

Examples: 
 T(n) = 4n + 4 = O(n)  
 T(n) = 164n + 35 = O(n)  
 T(n) = n2 + 35n + 5 = O(n2) 
 T(n) = 2n3 + 98n2 + 210 = O(n3)  
 T(n) = 2n + 5 = O(2n)
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Big-O describes the overall  
behavior

But  
164n+35 > n

Let T(n) be the running time of an 
algorithm  measured as number of 

operations given input of size n.  
T(n) is O(f(n))   

if it grows no faster than f(n)



Big-O Notation

Ignores everything except dominant term 

Examples: 
 T(n) = 4n + 4 = O(n)  
 T(n) = 164n + 35 = O(n)  
 T(n) = n2 + 35n + 5 = O(n2) 
 T(n) = 2n3 + 98n2 + 210 = O(n3)  
 T(n) = 2n + 5 = O(2n)
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Notation: describes the overall  
behavior

More formally: 
T(n) is O(f(n))   

if there exist constants k and n0 
such that for all n ≥ n0  

 T(n) ≤ kf(n)



!45

More formally: 
T(n) is O(f(n))   

if there exist constants k and n0 
such that for all n ≥ n0,  

 T(n) ≤ kf(n)

n0

k = 3

T(n) = n2 - 3n + 10 
T(n) is O(n2) 

For k=3 and n≥1.5
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More formally: 
T(n) is O(f(n))   

if there exist constants k and n0 
such that for all n ≥ n0,  

 T(n) ≤ kf(n)

n0

k = 3

T(n) = n2 - 3n + 10 
T(n) is O(n2) 

For k=3 and n≥1.5

This is why we can 
look at dominant 

term only to explain 
behavior



Big-O describes the overall growth rate of an 
algorithms for large n
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Proving Big-O Relationship

Apply definition of Big-O to prove that T(n) is O(f(n)) 
for particular functions T and f 

Do so by choosing k and n0 s.t. for all n ≥ n0,  
T(n) ≤ kf(n)
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Example:  
Suppose T(n)  =  (n+1)2  
We can say that  T(n)  is  O(n2) 

To prove it must find  k  and  n0  s.t. for all  n ≥ n0 ,  
(n+1)2 ≤ kn2  

 
 

 

Proving Big-O Relationship
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Example:  
Suppose T(n)  = (n+1)2  
We can say that T(n) is O(n2) 

To prove it must find k and n0 s.t. for all n ≥ n0,  
(n+1)2 ≤ kn2  

Expand (n+1)2 = n2 + 2n + 1 
Observe that, as long as n ≥1, n ≤ n2 and 1 ≤ n2 

 

Proving Big-O Relationship
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f(n)

Proving Big-O Relationship

Example:  
Suppose T(n)  = (n+1)2  
We can say that T(n) is O(n2) 

To prove it must find k and n0 s.t. for all n ≥ n0,  
(n+1)2 ≤ kn2  

Expand (n+1)2 = n2 + 2n + 1 
Observe that, as long as n ≥1, n ≤ n2 and 1 ≤ n2 

Thus if we choose n0 =1 and k = 4 we have 
n2 + 2n + 1 ≤ n2 + 2n2 + n2 = 4n2

!51
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Proving Big-O Relationship
Example:  
Suppose T(n)  = (n+1)2  
We can say that T(n) is O(n2) 

To prove it must find k and n0 s.t. for 
all n ≥ n0,  
(n+1)2 ≤ kn2 

Expand (n+1)2 = n2 + 2n + 1  
Observe that, as long as n ≥1, n ≤ n2 
and 1 ≤ n2  

Thus if we choose n0 =1 and k = 4 we 
have 
n2 + 2n + 1 ≤ n2 + 2n2 + n2 = 4n2

!52



Proving Big-O Relationship

Not Unique:  
Could also choose n0 =3 and 
k = 2 because 
(n+1)2 ≤ 2n2 for all n ≥ 3 

For proof one is enough
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A visual comparison of 
growth rates
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Tight is more meaningful

If T(n) is O(n) 
It is also true that T(n) is O(n3) 
And it is also true that T(n) is O(2n)  
But what does it mean??? 

The closest Big-O is the most descriptive of the 
overall worst-case behavior
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Big-O: upper bound 
 T(n) is O(f(n)) 
 if there exist constants k and n0 such that for all n ≥ n0  T(n) ≤ k f(n)  
 Grows no faster than f(n) 

Tightening the bounds
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Tightening the bounds
Big-O: upper bound  
 T(n) is O(f(n)) 
 if there exist constants k and n0 such that for all n ≥ n0  T(n) ≤ k f(n)  
 Grows no faster than f(n) 

Omega: lower bound 
 T(n) is Ω(f(n)) 
 if there exist constants k and n0 such that for all n ≥ n0 T(n) ≥ k f(n)  
 Grows at least as fast as f(n) 

!61



Tightening the bounds
Theta: tight bound 
 T(n) is Θ(f(n)) 
 Grows at the same rate as f(n) : iff both T(n) is O(f(n)) and Ω(f(n)) 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A numerical comparison of 
growth  rates
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10 100 1,000 10,000 100,000 1,000,000

1 1 1 1 1 1 1

log2n 3 6 9 13 16 19

n 10 102 103 104 105 106

n * log2n 30 664 9,965 105 106 107 

n2 102 104 106 108 1010 1012

n3 103 106 109 1012 1015 1018

2n 103 1030 10301 103,010 1030,103 10301,030

n
f(n)



What does Big-O describe?

“Long term” behavior of a function  
 
 If algorithm A has runtime O(n) and algorithm B   
 has runtime O(n2), for large inputs A will     
 always be faster. 
 
 If algorithm A has runtime O(n),  doubling the size  
 of the input will double the runtime
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Compare behavior 
of 2 algorithms

Analyze algorithm behavior 
with growing input



What can’t Big-O describe?

The actual runtime of an algorithm  
  10100n = O(n)  
  10-100n = O(n) 

How an algorithm behaves on small input 
  n3 = O(n3) 
  106 = O(1)
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To summarize Big-O

It is a means of describing the growth rate of a 
function 

It ignores all but the dominant term 

It ignores constants 

Allows for quantitative ranking of algorithms 

Allows for quantitative reasoning about algorithms
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