
Searching

Tiziana Ligorio
!1

Today’s Plan

Searching algorithms and
their analysis

!2

Searching

!3

Looking for something!

In this discussion we will assume

searching for an element in an array

Linear search
Most intuitive 
Start at first position and keep looking until you find it 
 

int linearSearch(int a[], int size, int value)
{  

 for (int i = 0; i < size; i++)
 {
 if (a[i] == value) {
 return i;
 }
 }
 return-1;
}

!4

How long does linear search take?

If you assume value is in the array and probability of
finding it at any location is uniform, on average n/2

If value is not in the array (worst case) n

Either way it’s O(n)

!5

What if you know array is sorted?
Can you do better than linear search?

!6

Lecture Activity

You are given a sorted array of integers.

How would you search for 115? (try to do it in fewer than
n steps: don’t search sequentially)

You can write pseudocode or succinctly explain your
algorithm

!7

We have done this before!
When?

!8

!9

Look in ?

Binary Search

!10

14 43 76 100 108 158 195 200 274 523 543 5993

Binary Search

!11

14 43 76 100 108 158 195 200 274 523 543 5993

Binary Search

!12

14 43 76 100 108 158 195 200 274 523 543 5993

Binary Search

!13

14 43 76 100 108 158 195 200 274 523 543 5993

Binary Search

!14

14 43 76 100 108 158 195 200 274 523 543 5993

Binary Search

!15

14 43 76 100 108 158 195 200 274 523 543 5993

Binary Search

!16

14 43 76 100 108 158 195 200 274 523 543 5993

Binary Search

What is happening here?

!17

Binary Search

What is happening here?

Size of search is cut in half at each step

!18

Binary Search

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume n = 2k 
T(n) = T(n/2) + 1  
 
 
 
 

!19

Simplification: assume n is
a power of 2 so it can be

evenly divided in two parts
The running time

One comparison

Search lower OR upper half

Binary Search

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume n = 2k 
T(n) = T(n/2) + 1  
 T(n/2) = T(n/4) +1  
 
 
 

!20

One comparison

Search lower OR upper half of n/2

Binary Search

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume n = 2k 
T(n) = T(n/2) + 1  
 T(n/2) = T(n/4) +1  
T(n) = T(n/4) + 1 + 1  
 
 

!21

Binary Search

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume n = 2k 
T(n) = T(n/2) + 1  
  
T(n) = T(n/4) + 2  
. . .  
 

!22

22 2

21
1

Binary Search

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume n = 2k 
T(n) = T(n/2) + 1  
  
T(n) = T(n/4) + 2  
. . .  
T(n) = T(n/2k) + k  

!23

Binary Search

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume n = 2k 
T(n) = T(n/2) + 1  
  
T(n) = T(n/4) + 2  
. . .  
T(n) = T(n/2k) + k  
T(n) = T(1) + log2(n)

!24n/n = 1

The number to which I
need to raise 2 to get n

And we said n = 2k

Binary Search

What is happening here?

Size of search is cut in half at each step

Let T(n) be the running time and assume n = 2k 
T(n) = T(n/2) + 1  
  
T(n) = T(n/4) + 2  
. . .  
T(n) = T(n/2k) + k  
T(n) = T(1) + log2(n)

!25

Binary search
is O(log(n))

