Sorting

Tiziana Ligorio

Today'’s Plan

Sorting algorithms ana
their analysis

Nelgilgle

Rearranging a sequence into increasing
(decreasing) order!

Several approaches

Can do it in may ways
What is the best way?

Let’s find out using Big-O

Lecture Activity

Write pseudocode to sort an array.

There are many approaches to sorting
We will look at some comparison-
based approaches here

Selection Sort

Selection Sort

' Find smallest element and
move it at lowest position
L

. Unsorted
. Sorted

Selection Sort

' Find smallest element and
move it at lowest posmon
L

H
1B
\/

Swap

Selection Sort

' Find smallest element and
move it at lowest position
L

10

Find smallest element and
move it at lowest position

Unsorted

11

Selection Sort

' Find smallest element and
move it at lowest position I

\/

Swap

12

Selection Sort

' Find smallest element and
move it at lowest position
L

13

Find smallest element and
move it at lowest position

14

Selection Sort

' Find smallest element and
move it at lowest position
L

15

Find smallest element and
move it at lowest position

16

Find smallest element and
move it at lowest position

17

Find smallest element and
move it at lowest position

18

Find smallest element and
move it at lowest position

19

Find smallest element and
move it at lowest position

20

Find smallest element and
move it at lowest position

21

Find smallest element and
move it at lowest position

22

Selection Sort

Find the smallest item and move it at position 1

Find the next-smallest item and move it at position 2

23

Selection Sort Analysis

How much work?

Find smallest: look at n elements

24

Selection Sort Analysis

How much work?
Find smallest: look at n elements

Find second smallest: look at n-1 elements

25

Selection Sort Analysis

How much work?
Find smallest: look at n elements
Find second smallest: look at n-1 elements

Find third smallest: look at n-2 elements

20

Selection Sort Analysis

How much work?
Find smallest: look at n elements
Find second smallest: look at n-1 elements

Find third smallest: look at n-2 elements

Total work: n + (n-1) + (n-2) + ... +1

27

n+m-1)+..+2+1=nn+1)/2

Selection Sort Analysis

n) = n(n+1) /2 comparisons + n data moves = ?

29

Selection Sort Analysis

n) = n(n+1) /2 comparisons + n data moves = ?

n)=(n2+n)/ 2 +n = ?

30

Selection Sort Analysis

T(n) =n(n+1) / 2 comparisons + n data moves = O()?

Tn)=M2+Nn)/2 +n=0()7?

Ignore constant

Ignore non-dominant terms

31

Selection Sort Analysis

T(n) =n(n+1) / 2 comparisons + n data moves = O()?

T(n)=(2+n)/ 2 + n = O(n?

Ignore constant

Ignore non-dominant terms

32

Selection Sort Analysis

n) = n(n+1) /2 comparisons + n data moves = ?

n)=(n?+n)/ 2 + n = 0O(n?

Selection Sort run time is n2

33

temp late<typename ItemType>
void selectionSort(ItemType the_arrayl[], size t size)
{
// fTirst = 1index of the first item in the subarray of items yet
// to be sorted,;
// smallest = index of the smallest item found
for (int first = 0; first < size; first++)
{
// At this point, the_array[0@ ...first-1] is sorted, and its
// entries are <= those in the_array[first ... size-1].
// Select the smallest entry in the_array[first ... size-1]
int smallest_index = findIndexOfSmallest(the_array, first,
size);
// Swap the smallest entry, the_arrayl[smallest index], with
// the first in the unsorted subarray the_array[first]
swap(the_array[smallest_index], the_array[first]);
} // end for
} // end selectionSort

34

temp late<typename ItemType>
void selectionSort(ItemType the_arrayl[], size t size)
{
// fTirst = 1index of the first item in the subarray of items yet
// to be sorted;
// smallest = index of the smallest item found
Pass for (int first = 0; first < size; first++)

O(n) {
// At this point, the_array[0@ ...first-1] is sorted, and its
// entries are <= those in the_array[first ... size-1].
// Select the smallest entry in the_array[first ... size-1]
O(n) int smallest_index = findIndexOfSmallest(the_array, first,

size);
// Swap the smallest entry, the_arrayl[smallest index], with
// the first in the unsorted subarray the_array[first]
swap(the_array[smallest_index], the_array[first]);

} // end for
O(n?)

} // end selectionSort

35

Stability

A sorting algorithm is Stable it elements that are

equal remain is same order relative to each other
after sorting

36

Find smallest element and
move it at lowest position

37

Find smallest element and
move it at lowest position

38

Find smallest element and
move it at lowest position

39

Find smallest element and
move it at lowest position

Unstable

40

Selection Sort Analysis

Execution time DOES NOT depend on initial
arrangement of data => ALWAYS O(n2)

O(n2) comparisons

Good choice for small n and/or data moves are costly
(O(n) data moves)

Unstable

41

Understanding O(n?)

T(n)

Understanding O(n?)

T(n)

T(2n) = 4T(n)

(2n)2 = 4n?

43

Understanding O(n?)

T(n)

T(3n) = 9T(n)

(3n)2 = 9n2

44

Understanding O(n2)
on large input

It size of input increases by factor of 100

Execution time increases by tactor of 10,000
T(100n) = 10,000T(n)

45

Understanding O(n2)
on large input

It size of input increases by factor of 100

Execution time increases by tactor of 10,000
T(100n) = 10,000T(n)

Assume n = 100,000 and T(n) = 17 seconds
Sorting 10,000,000 takes 10,000 longer

46

Understanding O(n2)
on large input

It size of input increases by factor of 100

Execution time increases by tactor of 10,000
T(100n) = 10,000T(n)

Assume n = 100,000 and T(n) = 17 seconds
Sorting 10,000,000 takes 10,000 longer

Sorting 10,000,000 entries takes =

Multiplying input by 100 to go from 1/sec to

47

Raise your hand it you had
Selection Sort

Bubble Sort

Compare adjacent elements
and if necessary swap them

50

Compare adjacent elements
and if necessary swap them

51

Compare adjacent elements
and if necessary swap them

52

Compare adjacent elements
and if necessary swap them

53

Compare adjacent elements
and if necessary swap them

54

Compare adjacent elements
and if necessary swap them

Compare adjacent elements
and if necessary swap them

56

Compare adjacent elements
and if necessary swap them

57

Bubble Sort

Compare adjacent elements
and if necessary swap them

. Unsorted
. Sorted

58

Compare adjacent elements
and if necessary swap them

Swap

59

Bubble Sort

End of1st Pass:
Not sorted, but largest has

Compare adjacent elements “bubbled up” to its proper
and if necessary swap them position

60

Bubble Sort

Compare adjacent elements
and if necessary swap them

2nd Pass:
Sort n-1

61

Compare adjacent elements
and if necessary swap them

62

Compare adjacent elements
and if necessary swap them

63

Compare adjacent elements
and if necessary swap them

64

Compare adjacent elements
and if necessary swap them

65

Compare adjacent elements
and if necessary swap them

66

Bubble Sort

Compare adjacent elements
and if necessary swap them

3rd Pass:
Sort n-2

6/

Compare adjacent elements
and if necessary swap them

68

Compare adjacent elements
and if necessary swap them

Compare adjacent elements
and if necessary swap them

70

Compare adjacent elements
and if necessary swap them

[a

Bubble Sort

Compare adjacent elements
and if necessary swap them

4th Pass:
Sort n-3

(2

Compare adjacent elements
and if necessary swap them

73

Compare adjacent elements
and if necessary swap them

74

Bubble Sort

5th Pass:

Sort n-4

Compare adjacent elements
and if necessary swap them

75

Compare adjacent elements
and if necessary swap them

/6

Compare adjacent elements
and if necessary swap them

’r’

Bubble Sort Analysis

How much work?

First pass: n-1 comparisons and at most n-1 swaps
Second pass: n-2 comparisons and at most n-2 swaps

Third pass: n-3 comparisons and at most n-3 swaps

Total work: (n-1) + (n-2) + . .. +1

/8

Bubble Sort Analysis

n) =n(n-1) / 2 comparisons + n(n-1) / 2 swaps =

A swap is usually more than one operation but this

simplification does not change the analysis

n=2(nn-1)/2)= ?

80

Bubble Sort Analysis

n) =n(n-1) / 2 comparisons + n(n-1) / 2 swaps =

A swap is usually more than one operation but this

simplification does not change the analysis
n=2(nn-1)/2)= ?

n) =2((n2-n)/ 2)= ?

81

Bubble Sort Analysis

T(n) =n(n-1) / 2 comparisons + n(n-1) / 2 swaps =
O)?

A swap is usually more than one operation but this

simplification does not change the analysis

Tn)=2(n(n-1)/2)=0O()?
T(n)=2((n%-n)/2)=O()?
T(n) =n2-n=0O()?

Ignore non-dominant terms

82

Bubble Sort Analysis

n) =n(n-1) / 2 comparisons + n(n-1) / 2 swaps =
?

A swap is usually more than one operation but this

simplification does not change the analysis
n) =2(n(n-1)/2)= ?
n =2((n%n)/2)= ?

n) = n2-n = ?

Bubble Sort run time is O(n2

83

Optimize!

—asy to check:

if there are no swaps in any given pass
stop because it is sorted

84

Bubble Sort

Compare adjacent elements
and if necessary swap them

85

Bubble Sort

Compare adjacent elements
and if necessary swap them

86

Bubble Sort

Compare adjacent elements
and if necessary swap them

87

Bubble Sort

Compare adjacent elements
and if necessary swap them

88

Bubble Sort

Compare adjacent elements
and if necessary swap them

89

Bubble Sort

Compare adjacent elements
and if necessary swap them

90

Bubble Sort

Compare adjacent elements
and if necessary swap them

91

temp late<typename ItemType>
void bubbleSort(ItemType the_arrayl[], size t size)
{
bool swapped = true; // Assume unsorted
int pass = 1;
while (swapped && (pass < size))
{
// At this point, if pass > 1 the_arraylsize+l-pass .. size-1]
// 1s sorted and all of its entries are > the entries in
// the_ arrayl[0 ... size-pass]
swapped = false;
for (int index = 0; index < size — pass; index++)

{
// At this point, all entries in the_arrayl[0 ... index-1]
// are <= the_array[index]
if (the_array[index] > the_array[index+1])
{
swap(the_array[index], the_arrayl[index+1]); //swap
swapped = true; // indicates array not yet sorted
}// end if
} // end for
//Assertion:the_arrayl[0 ... size—-pass-1l]<the_arrayl[size-pass]
pass++;

} // end while
} // end bubbleSort

92

temp late<typename ItemType>
void bubbleSort(ItemType the_arrayl[], size t size)
{
bool swapped = true; // Assume unsorted
int pass = 1;
Pass while (swapped && (pass < size))
O(n) {
// At this point, if pass > 1 the_arraylsize+l-pass .. size-1]
// 1s sorted and all of its entries are > the entries in
// the_ arrayl[0 ... size-pass]
swapped = false;
O(n) for (int index = 0; index < size - pass; index++)
{
// At this point, all entries in the_arrayl[0 ... index-1]
// are <= the_array[index]
if (the_array[index] > the_array[index+1])
{
swap(the_array[index], the_arrayl[index+1]); //swap
swapped = true; // indicates array not yet sorted
}// end if
} // end for
//Assertion:the_arrayl[0 ... size—-pass-1l]<the_arrayl[size-pass]
pass++;
} // end while

} // end bubbleSort O(n2)

93

Bubble Sort Analysis

Execution time DOES depend on initial arrangement of data

Worst case: O(n2) comparisons and data moves

Best case: O(n) comparisons and data moves

Stable

It array is already sorted bubble sort will stop after first pass
and no swaps => good choice for small n and data likely
somewhat sorted

94

Raise your hand it you had
Bubble Sort

https://www.youtube.com/watch?v=lyZQPjUT5B4

alo] al1] a[2] a[3] a[4] a[5] a[6] a[7] al8] al9]

My

,ﬁ@“”f@ﬁ

P Pl o) 1:35/515 @ (= O I3

96

lnsertion Sort

97

Pick first element in unsorted
region and put it in right place
In sorted region

98

Pick first element in unsorted
region and put it in right place
In sorted region

99

Pick first element in unsorted
region and put it in right place
In sorted region

100

Pick first element in unsorted
region and put it in right place
In sorted region

101

Pick first element in unsorted
region and put it in right place
In sorted region

102

Pick first element in unsorted
region and put it in right place
In sorted region

103

Pick first element in unsorted
region and put it in right place
In sorted region

104

Pick first element in unsorted
region and put it in right place
In sorted region

105

Pick first element in unsorted
region and put it in right place
In sorted region

106

Pick first element in unsorted
region and put it in right place
In sorted region

107

Pick first element in unsorted
region and put it in right place
In sorted region

108

Pick first element in unsorted
region and put it in right place
In sorted region

109

Pick first element in unsorted
region and put it in right place
In sorted region

110

Pick first element in unsorted
region and put it in right place
In sorted region

111

Pick first element in unsorted
region and put it in right place
In sorted region

112

Pick first element in unsorted
region and put it in right place
In sorted region

Swap

113

Pick first element in unsorted
region and put it in right place
In sorted region

114

Pick first element in unsorted
region and put it in right place
In sorted region

115

Pick first element in unsorted
region and put it in right place
In sorted region

116

Pick first element in unsorted
region and put it in right place
In sorted region

117

Pick first element in unsorted
region and put it in right place
In sorted region

118

Pick first element in unsorted
region and put it in right place
In sorted region

119

Pick first element in unsorted
region and put it in right place
In sorted region

120

Pick first element in unsorted
region and put it in right place
In sorted region

121

Pick first element in unsorted
region and put it in right place
In sorted region

122

Pick first element in unsorted
region and put it in right place
In sorted region

123

Insertion Sort Analysis

How much work?
First pass: 1 comparison and at most 1 swap

Second pass: at most 2 comparisons and at most 2 swaps

hird pass: at most 3 comparisons and at most 3 swaps

Totalwork: 1+ 2+ 3+ ...+ (n-1)

124

Insertion Sort Analysis

n) =n(n-1) / 2 comparisons + n(n-1) / 2 swaps = ?
n) =2((n2-n)/ 2)= ?

n) = n2-n = O(n?

Insertion Sort run time is O(n?2

126

Pick first element in unsorted
region and put it in right place
In sorted region

127

Pick first element in unsorted
region and put it in right place
In sorted region

128

Pick first element in unsorted
region and put it in right place
In sorted region

129

Pick first element in unsorted
region and put it in right place
In sorted region

130

Pick first element in unsorted
region and put it in right place
In sorted region

131

Pick first element in unsorted
region and put it in right place
In sorted region

132

Pick first element in unsorted
region and put it in right place
In sorted region

133

Pick first element in unsorted
region and put it in right place
In sorted region

ez

Pick first element in unsorted
region and put it in right place
In sorted region

135

Pick first element in unsorted
region and put it in right place
In sorted region

136

Pick first element in unsorted
region and put it in right place
In sorted region

137

Insertion Sort Analysis

Execution time DOES depend on initial arrangement of data

Worst case: O(n2) comparisons and data moves

Best case: O(n) comparisons and data moves

Stable

It array is already sorted Insertion sort will do only n

comparisons and no swaps => good choice for small n and
data likely somewhat sorted

138

temp late<typename ItemType>
void insertionSort(ItemType the_arrayl[], size t size)
{
// unsorted = first index of the unsorted region,
// Initially, sorted region is the_arrayl[0],

// unsorted region is the_array[l ... size-1].
// In general, sorted region is the_array[0@ ... unsorted-1],
// unsorted region the_arraylunsorted ... size-1]

for (int unsorted = 1; unsorted < size; unsorted++)
{
// At this point, the_array[@ ... unsorted-1] is sorted.
// Keep swapping item to be inserted currently at
// the_arrayl[unsorted] with items at lower indices
// as long as its value is > the index of the item
int current = unsorted; // currently being inserted
while ((current > 0) &&
(the_arrayl[current - 1] > the_arraylcurrent]))

{
swap(the_arraylcurrent], the_arraylcurrent - 1]1); // swap
current—;
} // end while
} // end for

} // end insertionSort

139

temp late<typename ItemType>
void insertionSort(ItemType the_arrayl[], size t size)
{
// unsorted = first index of the unsorted region,
// Initially, sorted region is the_arrayl[0],

// unsorted region is the_array[l ... size-1].
// In general, sorted region is the_array[0@ ... unsorted-1],
// unsorted region the_arraylunsorted ... size-1]

%E(lS)Sfor (int unsorted = 1; unsorted < size; unsorted++)
n) {

// At this point, the_array[@ ... unsorted-1] is sorted.

// Keep swapping item to be inserted currently at

// the_arrayl[unsorted] with items at lower indices

// as long as its value is > the index of the item

int current = unsorted; // currently being inserted

O(n) while ((current > 0) &&
(the_arrayl[current - 1] > the_arraylcurrent]))

{
swap(the_arraylcurrent], the_arraylcurrent - 1]1); // swap
current—;
} // end while
} // end for

} // end insertionSort O(n2)

140

Raise your hand it you had
Insertion Sort

What we have so far

Worst Case | Best Case

O(n?2) O(n2)

142

Wi | Cture Activity

right place in sorted region

Sort the array using Insertion Sort
Show the entire array after each comparison/swap

operation and at each step mark clearly the division
between the sorted and unsorted portions of the array

popnnnn

pDopnnnn

143

https://www.toptal.com/developers/sorting-algorithms

> > > >

Play All Insertion Selection Bubble

>

Random

>

Nearly Sorted

>

Reversed

145

What we have so far

Worst Case | Best Case

O(n?2) O(n2)

146

Can we do better?

Can we do better?

Divide and Conquer!!!

/

Subproblem Subproblem

/ /
Compute Compute Compute Compute
Subproblem Subproblem Subproblem Subproblem

148

Merge Sort

Understanding O(n?)

T(n)

Understanding O(n?)

T(n)

Understanding O(n?)

T(n)

T(1/2n) T(1/2n)

152

Understanding O(n?)

T(n)

T(1/2n) T(1/2n)

(n/2)2 = n2/4

1563

Understanding O(n?)

T(n)

T(1/2n) = 1/4T(n) T(1/2n) = 1/4T(n)

(n/2)2 = n2/4

154

Understanding O(n?)

T(n)

T(1/2n) = 1/4T(n) T(1/2n) = 1/4T(n)

(n/2)2 = n2/4

155

Key Insight: Merge is linear

1 3

2 4 7 8 10 5 6 9

156

Key Insight: Merge is linear

||II| ,IIII
!

247810 3 5§ 6 9

Key Insight: Merge is linear

3

247810 5 6 9

Key Insight: Merge is linear

3

247810 5 6 9

Key Insight: Merge is linear

3

47810 5 6 9

=
1 2

Key Insight: Merge is linear

3

47810 5 6 9

=
1 2

Key Insight: Merge is linear

!69
!

47810

o BE
1 2 3

Key Insight: Merge is linear

!69
!

47810

o BE
1 2 3

Key Insight: Merge is linear

!69
!

7810

-III
1 2 3

4

Key Insight: Merge is linear

!69
!

7810

-III
1 2 3

4

Key Insight: Merge is linear

!

7810

-IIII
1 2 3
1

4 5

Key Insight: Merge is linear

!

7810

-IIII
1 2 3
1

4 5

Key Insight: Merge is linear

7810

-IIIII
1 2 3

4 5 6

(e

Key Insight: Merge is linear

7810

-IIIII
1 2 3

4 5 6

(e

Key Insight: Merge is linear

Key Insight: Merge is linear

Key Insight: Merge is linear

Key Insight: Merge is linear

Key Insight: Merge is linear

Key Insight: Merge is linear

Key Insight: Merge is linear

1 2 3

4 5 6 7 8 9 10

Key Insight: Merge is linear

Each step makes one comparison and

reduces the number of elements to
be merged by 1.
If there are n total elements to be
merged, merging is O(n)

1 2 3 4 5 6 7 8 9 10

177

Divide ana Conquer
100]14] 3 [42 [2uo[zra]sze] 108 70 o[ese] 58] 2 [aso] 11 s [se[s |

T(n)

T(1/2n) = 1/4T(n) T(1/2n) = 1/4T(n)

178

Divide ana Conquer
100]14] 3 [42 [2uo[zra]sze] 108 70 o[ese] 58] 2 [aso] 11 s [se[s |

T(n)

T(1/2n) = 1/4T(n) T(1/2n) = 1/4T(n)

T(n) = 1/2T(n) + n

Speed up insertion sort by a factor of two by splitting
in half, sorting separately and merging results!

179

Divide and Conquer

Splitting in two gives

180

Divide and Conquer

Splitting in two gives

Splitting in four gives 4x improvement.

181

Divide and Conquer

Splitting in two gives
Splitting in four gives 4x improvement.

Splitting in eight gives 8x improvement.

182

Divide and Conquer

Splitting in two gives
Splitting in four gives 4x improvement.
Splitting in eight gives 8x improvement.

What it we never stop splitting?

183

Merge Sort
143 43 200 274 523,108 76 195 699 158 2 260 11 64 o3z

14 3 43 200 274 523 108 76 195 599 2 260 11 64 932
14 3 43 200 274 523 108 76 195 599 260 11 64 932

43 200 pm 274 523 108 76 195 599 260 11 64 932
o L DelE=D el Ll =] =1 T b=

184

Merge Sort
143 43 200 274 523,108 76 195 699 158 2 260 11 64 o3z

14 3 43 200 274 523 108 76 195 599 2 260 11 64 932
14 3 43 200 274 523 108 76 195 599 260 11 64 932

43 200 g 274 523 108 76 195 599 260 11 64 932
L Lol Tk =] - =1 L=]

185

Merge Sort
143 43 200 274 523,108 76 195 699 158 2 260 11 64 o3z

14 3 43 200 274 523 108 76 195 599 2 260 11 64 932
14 3 43 200 274 523 108 76 195 599 260 11 64 932

43 200 274 523 76 108 p 195 599 11 26 64 932
o e Lol E=Lel = Pol=E =] - =1 L=]

186

Merge Sort

14 3 43 200 274 523 108 76 195 599 2 260 11 64 932
3 14 43 200 76 108 274 523 2 158 195 11 26 64 932

43 200 274 523 76 108 m 2 158 m 64 932
o[Lo Pel=A=le L L=l =1 - [0 L= T

187

Merge Sort

14 43 76 108 200 274 523 26 64 158 195 599 932
3 14 43 200 76 108 274 523 2 158 195 11 26 64 932

43 200 274 523 76 108 g 195 599 2 158 m 64 932
o L PolD=Del = T=l==] - T=1 T b=

188

Merge Sort
2 3 11 14 26 43 64 76 108 158 195

14 43 76 108 200 274 523 m 26 64 158 195 599 932
3 14 43 200 76 108 274 523 2 158 195 11 26 64 932

o[Lo Pel=A=le L L=l =1 - [0 L= T

189

Merge Sort
2 3 11 14 26 43 64 76 108 158 195

14 43 76 108 200 274 523 26 64 158 195 599 932
3 14 43 200 76 108 274 523 2 158 195 11 26 64 932

43 200 274 523 76 108 g 195 599 2 158 11 26 64 932
o L PolD=Del = T=l==] - T=1 T b=

190

Merge Sort Analysis
2 3 11 14 26 43 64 76 108 158 195

O(n)

14 43 76 108 200 274 523 26 64 158 195 599 932
O(n)

3 14 43 200l 76 108 274 523l 2 158 195 11 26 64 932
O(n)

43 200 g 274 523 76 108 g 195 599 2 158 11 26 64 932

O(n)

o e Lol =Ll Pol=E =] - =1 L=]

191

Merge Sort Analysis
2 3 11 14 26 43 64 76 108 158 195 n

14 43 76 108 200 274 523 26 64 158 195 599 932 n/2

3 14 43 200 76 108 274 523 2 158 195 11 26 64 932

43 200 g 274 523 76 108 g 195 599 2 158 11 26 64 932 N
14 | o f ao faoo fzra fseafuoall 76 fuos Jooo fuso] 2 Jacolf 11 s Qoo

n/2k

n/4

Merge n how many times?

192

Merge Sort Analysis
2 3 11 14 26 43 64 76 108 158 195 n

14 43 76 108 200 274 523 26 64 158 195 599 932 n/2

3 14 43 200 76 108 274 523 2 158 195 11 26 64 932

43 200 g 274 523 76 108 g 195 599 2 158 11 26 64 932 N
14 | o f ao faoo fzra fseafuoall 76 fuos Jooo fuso] 2 Jacolf 11 s Qoo

n/2k

n/4

Merge n how may times? n/2k = 1
n = 2k
log2 n = k

193

Merge Sort Analysis
2 3 11 14 26 43 64 76 108 158 195 n

14 43 76 108 200 274 523 26 64 158 195 599 932 n/2

3 14 43 200 76 108 274 523 2 158 195 11 26 64 932

43 200 g 274 523 76 108 g 195 599 2 158 11 26 64 932 N
14 | o f ao faoo fzra fseafuoall 76 fuos Jooo fuso] 2 Jacolf 11 s Qoo

n/2k

n/4

Merge n elements logz n times

194

Merge Sort Analysis
2 3 11 14 26 43 64 76 108 158 195

O(n)

14 43 76 108 200 274 523 26 64 158 195 599 932
O(n)

3 14 43 200l 76 108 274 523l 2 158 195 11 26 64 932
O(n)

43 200 g 274 523 76 108 g 195 599 2 158 11 26 64 932

O(n)

o L PolD=Dek = T=l=D=] - T=1 T b=

195

Merge Sort

How would you code this?

196

Merge Sort

How would you code this?

Hint: Divide and Conquerl!!

/

Subproblem Subproblem

/ /

Compute Compute Compute Compute
Subproblem Subproblem Subproblem Subproblem

197

Merge Sort

void mergeSort(array)

{
1T array size <=1
return //base case
split array into left_array and right_array

—p mergeSort(left_array)
—p mergeSort(right_array)

merge(left_array, right_array, array)

198

Merge Sort Analysis

Execution time does NOT depend on initial arrangement of data

Worst Case: O(n log n) comparisons and data moves
Best Case: O(n log n) comparisons and data moves
Stable

Best we can do with comparison-based sorting that does not rely

on a data structure in the worst case => can't beat O(n log n

Space overhead: auxiliary array at each merge step

199

What we have so far

Worst Case | Best Case

O(n2) O(n2)
O(n?2) O(n)
O(n2) O(n)

Quick Sort

Quick Sort

Select a pivot. Arrange other entries

s.t. entries in left partition are < pivot
and entries in right partition are > pivot

202

Quick Sort

Quick Sort

Select a pivot. Arrange other entries

> pivot

s.t. entries in left partition are < pivot
and entries in right partition are > pivot

pivot

204

Quick Sort

Select a pivot. Arrange other entries

> pivot

s.t. entries in left partition are < pivot
and entries in right partition are > pivot

pivot

205

Quick Sort

Select a pivot. Arrange other entries
s.t. entries in left partition are < pivot
and entries in right partition are > pivot

Quick Sort

Select a pivot. Arrange other entries
s.t. entries in left partition are < pivot
and entries in right partition are > pivot

207

Quick Sort

Select a pivot. Arrange other entries

> pivot

s.t. entries in left partition are < pivot
and entries in right partition are > pivot

208

Quick Sort

Select a pivot. Arrange other entries

> pivot

s.t. entries in left partition are < pivot
and entries in right partition are > pivot

209

Quick Sort

Select a pivot. Arrange other entries
s.t. entries in left partition are < pivot
and entries in right partition are > pivot

Quick Sort

Select a pivot. Arrange other entries

s.t. entries in left partition are < pivot
and entries in right partition are > pivot

pivot

211

Quick Sort

Select a pivot. Arrange other entries

> pivot

s.t. entries in left partition are < pivot
and entries in right partition are > pivot

pivot

212

Quick Sort

Select a pivot. Arrange other entries

> pivot

s.t. entries in left partition are < pivot
and entries in right partition are > pivot

pivot

213

Quick Sort

Select a pivot. Arrange other entries

s.t. entries in left partition are < pivot
and entries in right partition are > pivot

pivot

214

Quick Sort

Select a pivot. Arrange other entries
s.t. entries in left partition are < pivot
and entries in right partition are > pivot

. <= pivot

215

Quick Sort

Select a pivot. Arrange other entries
s.t. entries in left partition are < pivot

. <= pivot
. > pivot

and entries in right partition are > pivot

pivot

216

Quick Sort

Select a pivot. Arrange other entries
s.t. entries in left partition are < pivot

. <= pivot
. > pivot

and entries in right partition are > pivot

< pivot > pivot
quickSort() quickSort()

217

Quick Sort Analysis

Divide and Conquer

n comparisons for each partition
How many subproblems? => Depends on pivot selection

|deally partition divides problem into two n/2
subproblems for log(n) recursive calls (Best case)

Possibly (though unlikely) each partition has 1 empty
subarray for

218

temp late<typename ItemType>
void quickSort(ItemType the_arrayl[l, int first, int last)

{
if (last - first + 1 < MIN_SIZE) _

{
}

else

{

insertionSort(the_array, first, last);

// Create the partition: S1
int pivot_index = partitio

Pivot | S2
(the_array, first, last);

// Sort subarrays S1 and S2
—P quickSort(the_array, first, pivot_index);
quickSort(the_array, pivotIndex + 1, last);
} // end if
} // end quickSort

219

How to select pivot?

How to select pivot?

|deally median

\\\\III/
Need to sort array to find median .

Other ideas?

221

How to select pivot?

ldeally median

Need to sort array to find median

Other ideas?
Pick first

222

How to select pivot?

ldeally median

Need to sort array to find median

Other ideas?

Pick tirst, middle, last position and order them
making middle the pivot

223

How to select pivot?

ldeally median

Need to sort array to find median

Other ideas?

Pick tirst, middle, last position and order them
making middle the pivot

S 5 O B B B
!

pivot
224

Quick Sort Analysis

Execution time DOES depend on initial arrangement of data AND on
PIVOT SELECTION (luck?) => on random data can be faster than Merge

Sort

Possible optimization (e.g. smart pivot selection, speed up base case,
iterative instead of recursive implementation) can improve actual runtime
-> fastest comparison-based sorting algorithm on average

Worst Case: O(n2) comparisons and data moves

Best Case: O(n log n) comparisons and data moves

Unstable

225

Worst Case | Best Case
O(n2) O n2)
O(n2) O(n)
O n2) O(n)

O(nlogn) | O(nlogn}
O(n2) | O(nlogn)

226

https://www.toptal.com/developers/sorting-algorithms

> > > >

Play All Insertion Selection Bubble

>

Random

>

Nearly Sorted

>

Reversed

227

https://www.youtube.com/watch?v=kPRAOW 1kECg

Insertion Sort - 3179 comparisons, 9441 array accesses, 0.50 ms delay http://panthema.net/2013/sound-of-sorting

T e |

228

