
Sorting

Tiziana Ligorio
!1

Today’s Plan

Sorting algorithms and
their analysis

!2

Sorting

!3

Rearranging a sequence into increasing
(decreasing) order!

Several approaches

Can do it in may ways

What is the best way?

Let’s find out using Big-O

!4

Lecture Activity

Write pseudocode to sort an array.

!5

144376 100108158 195200 274523543 5993

There are many approaches to sorting
We will look at some comparison-

based approaches here

!6

Selection Sort

!7

Selection Sort

!8

Find smallest element and
move it at lowest position

Unsorted

Sorted

1st Pass

Selection Sort

!9

Find smallest element and
move it at lowest position

Unsorted

Sorted

Swap

1st Pass

Selection Sort

!10

Find smallest element and
move it at lowest position

Unsorted

Sorted

1st Pass

Selection Sort

!11

Find smallest element and
move it at lowest position

Unsorted

Sorted

Unsorted

2nd Pass

Selection Sort

!12

Find smallest element and
move it at lowest position

Unsorted

Sorted

Swap

2nd Pass

Selection Sort

!13

Find smallest element and
move it at lowest position

Unsorted

Sorted

2nd Pass

Selection Sort

!14

Find smallest element and
move it at lowest position

Unsorted

Sorted

3rd Pass

Selection Sort

!15

Find smallest element and
move it at lowest position

Unsorted

Sorted

3rd Pass

Selection Sort

!16

Find smallest element and
move it at lowest position

Unsorted

Sorted

4th Pass

Selection Sort

!17

Find smallest element and
move it at lowest position

Unsorted

Sorted

4th Pass

Selection Sort

!18

Find smallest element and
move it at lowest position

Unsorted

Sorted

5th Pass

Selection Sort

!19

Find smallest element and
move it at lowest position

Unsorted

Sorted

Swap

5th Pass

Selection Sort

!20

Find smallest element and
move it at lowest position

Unsorted

Sorted

5th Pass

Selection Sort

!21

Find smallest element and
move it at lowest position

Unsorted

Sorted

6th Pass

Selection Sort

!22

Find smallest element and
move it at lowest position

Unsorted

Sorted

Selection Sort

Find the smallest item and move it at position 1

Find the next-smallest item and move it at position 2

. . .

!23

Selection Sort Analysis

How much work?

Find smallest: look at n elements

 

!24

Selection Sort Analysis

How much work?

Find smallest: look at n elements

Find second smallest: look at n-1 elements

 

!25

Selection Sort Analysis

How much work?

Find smallest: look at n elements

Find second smallest: look at n-1 elements

Find third smallest: look at n-2 elements 
. . .

!26

Selection Sort Analysis

How much work?

Find smallest: look at n elements

Find second smallest: look at n-1 elements

Find third smallest: look at n-2 elements 
. . .

Total work: n + (n-1) + (n-2) + . . . +1

!27

!28

n + (n-1) + ... + 2 + 1

n

n + 1

= n(n+1) / 2

Selection Sort Analysis

T(n) = n(n+1) / 2 comparisons + n data moves = O()?

!29

Selection Sort Analysis

T(n) = n(n+1) / 2 comparisons + n data moves = O()?

T(n) = (n2+n) / 2 + n = O()?

!30

Selection Sort Analysis

T(n) = n(n+1) / 2 comparisons + n data moves = O()?

T(n) = (n2+n) / 2 + n = O()?

!31

Ignore constant

Ignore non-dominant terms

Selection Sort Analysis

T(n) = n(n+1) / 2 comparisons + n data moves = O()?

T(n) = (n2+n) / 2 + n = O(n2)

!32

Ignore constant

Ignore non-dominant terms

Selection Sort Analysis

T(n) = n(n+1) / 2 comparisons + n data moves = O()?

T(n) = (n2+n) / 2 + n = O(n2)

Selection Sort run time is O(n2)

!33

!34

template<typename ItemType>  
void selectionSort(ItemType the_array[], size_t size)
{
 // first = index of the first item in the subarray of items yet
 // to be sorted;
 // smallest = index of the smallest item found
 for (int first = 0; first < size; first++)
 {
 // At this point, the_array[0 ...first-1] is sorted, and its
 // entries are <= those in the_array[first ... size-1].
 // Select the smallest entry in the_array[first ... size-1]
 int smallest_index = findIndexOfSmallest(the_array, first,
 size);
 // Swap the smallest entry, the_array[smallest_index], with
 // the first in the unsorted subarray the_array[first]
 swap(the_array[smallest_index], the_array[first]);
 } // end for
} // end selectionSort

template<typename ItemType>  
void selectionSort(ItemType the_array[], size_t size)
{
 // first = index of the first item in the subarray of items yet
 // to be sorted;
 // smallest = index of the smallest item found
 for (int first = 0; first < size; first++)
 {
 // At this point, the_array[0 ...first-1] is sorted, and its
 // entries are <= those in the_array[first ... size-1].
 // Select the smallest entry in the_array[first ... size-1]
 int smallest_index = findIndexOfSmallest(the_array, first,
 size);
 // Swap the smallest entry, the_array[smallest_index], with
 // the first in the unsorted subarray the_array[first]
 swap(the_array[smallest_index], the_array[first]);
 } // end for
} // end selectionSort

!35

Pass
O(n)

O(n)

O(n2)

Stability

A sorting algorithm is Stable if elements that are
equal remain is same order relative to each other
after sorting

!36

Selection Sort

!37

Find smallest element and
move it at lowest position

Unsorted

Sorted

Selection Sort

!38

Find smallest element and
move it at lowest position

Unsorted

Sorted

Selection Sort

!39

Find smallest element and
move it at lowest position

Unsorted

Sorted

Swap

Selection Sort

!40

Find smallest element and
move it at lowest position

Unsorted

Sorted

Unstable

Selection Sort Analysis

Execution time DOES NOT depend on initial
arrangement of data => ALWAYS O(n2)

O(n2) comparisons

Good choice for small n and/or data moves are costly
(O(n) data moves)

Unstable

!41

Understanding O(n2)

!42

14 43100 200 2743

T(n)

Understanding O(n2)

!43

14 43

76

100

108 158195

200 274

523 599

3

14 43100 200 2743

T(2n) ≈ 4T(n)

T(n)

(2n)2 = 4n2

Understanding O(n2)

!44

14 43

76

100

108 158195

200 274

523 599

3

14 43100 200 2743 11260 5642 932

T(n)

T(3n) ≈ 9T(n)

(3n)2 = 9n2

Understanding O(n2)
on large input

If size of input increases by factor of 100 
Execution time increases by factor of 10,000  
T(100n) = 10,000T(n)

 

!45

Understanding O(n2)
on large input

If size of input increases by factor of 100 
Execution time increases by factor of 10,000  
T(100n) = 10,000T(n)

Assume n = 100,000 and T(n) = 17 seconds  
Sorting 10,000,000 takes 10,000 longer

!46

Understanding O(n2)
on large input

If size of input increases by factor of 100 
Execution time increases by factor of 10,000  
T(100n) = 10,000T(n)

Assume n = 100,000 and T(n) = 17 seconds  
Sorting 10,000,000 takes 10,000 longer

Sorting 10,000,000 entries takes ≈ 2 days

Multiplying input by 100 to go from 17sec to 2 days!!!

!47

Raise your hand if you had
Selection Sort

!48

Bubble Sort

!49

Bubble Sort

!50

Compare adjacent elements
and if necessary swap them

Unsorted

Sorted

Bubble Sort

!51

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Bubble Sort

!52

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Swap

Bubble Sort

!53

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Bubble Sort

!54

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Swap

Bubble Sort

!55

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Bubble Sort

!56

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Swap

Bubble Sort

!57

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Bubble Sort

!58

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Bubble Sort

!59

Compare adjacent elements
and if necessary swap them 1st Pass

Unsorted

Sorted

Swap

Bubble Sort

!60

Compare adjacent elements
and if necessary swap them

End of1st Pass:
Not sorted, but largest has
“bubbled up” to its proper

position

Bubble Sort

!61

Compare adjacent elements
and if necessary swap them

2nd Pass:
Sort n-1

Bubble Sort

!62

Compare adjacent elements
and if necessary swap them 2nd Pass

Unsorted

Sorted

Bubble Sort

!63

Compare adjacent elements
and if necessary swap them 2nd Pass

Unsorted

Sorted

Bubble Sort

!64

Compare adjacent elements
and if necessary swap them

Swap

2nd Pass

Unsorted

Sorted

Bubble Sort

!65

Compare adjacent elements
and if necessary swap them 2nd Pass

Unsorted

Sorted

Bubble Sort

!66

Compare adjacent elements
and if necessary swap them 2nd Pass

Unsorted

Sorted

Bubble Sort

!67

Compare adjacent elements
and if necessary swap them

3rd Pass:
Sort n-2

Bubble Sort

!68

Compare adjacent elements
and if necessary swap them 3rd Pass

Unsorted

Sorted

Bubble Sort

!69

Compare adjacent elements
and if necessary swap them 3rd Pass

Swap
Array is sorted

But our algorithm doesn’t know
It keeps on going

Unsorted

Sorted

Bubble Sort

!70

Compare adjacent elements
and if necessary swap them 3rd Pass

Unsorted

Sorted

Bubble Sort

!71

Compare adjacent elements
and if necessary swap them 3rd Pass

Unsorted

Sorted

Bubble Sort

!72

Compare adjacent elements
and if necessary swap them

4th Pass:
Sort n-3

Bubble Sort

!73

Compare adjacent elements
and if necessary swap them 4th Pass

Unsorted

Sorted

Bubble Sort

!74

Compare adjacent elements
and if necessary swap them 4th Pass

Unsorted

Sorted

Bubble Sort

!75

Compare adjacent elements
and if necessary swap them

5th Pass:
Sort n-4

Bubble Sort

!76

Compare adjacent elements
and if necessary swap them 5th Pass

Unsorted

Sorted

Bubble Sort

!77

Compare adjacent elements
and if necessary swap them Done!

Unsorted

Sorted

Bubble Sort Analysis

How much work?

First pass: n-1 comparisons and at most n-1 swaps

Second pass: n-2 comparisons and at most n-2 swaps

Third pass: n-3 comparisons and at most n-3 swaps 
. . .

Total work: (n-1) + (n-2) + . . . +1

!78

!79

n + (n-1) + ... + 2 + 1

n

n + 1

= n(n+1) / 2 (n-1) + (n-2) + . . . + 2 + 1 = n(n-1)/2

 (n-1)

 n

Bubble Sort Analysis

T(n) = n(n-1) / 2 comparisons + n(n-1) / 2 swaps = O()?

A swap is usually more than one operation but this
simplification does not change the analysis

T(n) = 2(n(n-1) / 2)= O()?

!80

Bubble Sort Analysis

T(n) = n(n-1) / 2 comparisons + n(n-1) / 2 swaps = O()?

A swap is usually more than one operation but this
simplification does not change the analysis

T(n) = 2(n(n-1) / 2)= O()?

T(n) = 2((n2-n) / 2)= O()?

!81

!82

Ignore non-dominant terms

T(n) = n(n-1) / 2 comparisons + n(n-1) / 2 swaps =
O()?

A swap is usually more than one operation but this
simplification does not change the analysis

T(n) = 2(n(n-1) / 2)= O()?

T(n) = 2((n2-n) / 2)= O()?

T(n) = n2-n = O()?

Bubble Sort Analysis

T(n) = n(n-1) / 2 comparisons + n(n-1) / 2 swaps =
O()?

A swap is usually more than one operation but this
simplification does not change the analysis

T(n) = 2(n(n-1) / 2)= O()?

T(n) = 2((n2-n) / 2)= O()?

T(n) = n2-n = O()?

Bubble Sort Analysis

!83

Bubble Sort run time is O(n2)

Optimize!

Easy to check:  
if there are no swaps in any given pass 
 stop because it is sorted

!84

Bubble Sort

!85

Compare adjacent elements
and if necessary swap them

Bubble Sort

!86

Compare adjacent elements
and if necessary swap them

Bubble Sort

!87

Compare adjacent elements
and if necessary swap them

Bubble Sort

!88

Compare adjacent elements
and if necessary swap them

Bubble Sort

!89

Compare adjacent elements
and if necessary swap them

Bubble Sort

!90

Compare adjacent elements
and if necessary swap them

Bubble Sort

!91

Compare adjacent elements
and if necessary swap them

!92

template<typename ItemType>
void bubbleSort(ItemType the_array[], size_t size)
{
 bool swapped = true; // Assume unsorted
 int pass = 1;
 while (swapped && (pass < size))
 {
 // At this point, if pass > 1 the_array[size+1-pass … size-1]
 // is sorted and all of its entries are > the entries in
 // the_array[0 ... size-pass]
 swapped = false;
 for (int index = 0; index < size - pass; index++)
 {
 // At this point, all entries in the_array[0 ... index-1]
 // are <= the_array[index]
 if (the_array[index] > the_array[index+1])
 {
 swap(the_array[index], the_array[index+1]); //swap
 swapped = true; // indicates array not yet sorted
 }// end if
 } // end for
 //Assertion:the_array[0 ... size-pass-1]<the_array[size-pass]
 pass++;
 } // end while
} // end bubbleSort

template<typename ItemType>
void bubbleSort(ItemType the_array[], size_t size)
{
 bool swapped = true; // Assume unsorted
 int pass = 1;
 while (swapped && (pass < size))
 {
 // At this point, if pass > 1 the_array[size+1-pass … size-1]
 // is sorted and all of its entries are > the entries in
 // the_array[0 ... size-pass]
 swapped = false;
 for (int index = 0; index < size - pass; index++)
 {
 // At this point, all entries in the_array[0 ... index-1]
 // are <= the_array[index]
 if (the_array[index] > the_array[index+1])
 {
 swap(the_array[index], the_array[index+1]); //swap
 swapped = true; // indicates array not yet sorted
 }// end if
 } // end for
 //Assertion:the_array[0 ... size-pass-1]<the_array[size-pass]
 pass++;
 } // end while
} // end bubbleSort

!93

Pass
O(n)

O(n)

O(n2)

Bubble Sort Analysis

Execution time DOES depend on initial arrangement of data

Worst case: O(n2) comparisons and data moves

Best case: O(n) comparisons and data moves

Stable

If array is already sorted bubble sort will stop after first pass
and no swaps => good choice for small n and data likely
somewhat sorted

!94

Raise your hand if you had
Bubble Sort

!95

https://www.youtube.com/watch?v=lyZQPjUT5B4

!96

Insertion Sort

!97

Insertion Sort

!98

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

1st Pass

Insertion Sort

!99

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

1st Pass

Insertion Sort

!100

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Swap

1st Pass

Insertion Sort

!101

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

1st Pass

Insertion Sort

!102

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

!103

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

2nd Pass

Insertion Sort

!104

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Swap

2nd Pass

Insertion Sort

!105

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

2nd Pass

Insertion Sort

!106

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

2nd Pass

Insertion Sort

!107

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

!108

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

3rd Pass

Insertion Sort

!109

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Swap

3rd Pass

Insertion Sort

!110

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

3rd Pass

Insertion Sort

!111

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Swap

3rd Pass

Insertion Sort

!112

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

3rd Pass

Insertion Sort

!113

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Swap

3rd Pass

Insertion Sort

!114

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

3rd Pass

Insertion Sort

!115

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

!116

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

4th Pass

Insertion Sort

!117

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

4th Pass

Insertion Sort

!118

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

!119

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

5th Pass

Insertion Sort

!120

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Swap

5th Pass

Insertion Sort

!121

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

5th Pass

Insertion Sort

!122

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

5th Pass

Insertion Sort

!123

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort Analysis

How much work?

First pass: 1 comparison and at most 1 swap

Second pass: at most 2 comparisons and at most 2 swaps

Third pass: at most 3 comparisons and at most 3 swaps 
. . .

Total work: 1 + 2 + 3 + . . . + (n-1)

!124

!125

n + (n-1) + ... + 2 + 1

n

n + 1

= n(n+1) / 2 1 + 2 + . . . (n-2) + (n-1) = n(n-1)/2

 (n-1)

 n

Insertion Sort Analysis

T(n) = n(n-1) / 2 comparisons + n(n-1) / 2 swaps = O()?

T(n) = 2((n2-n) / 2)= O()?

T(n) = n2-n = O(n2)

Insertion Sort run time is O(n2)

!126

Insertion Sort

!127

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

!128

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

!129

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

!130

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

!131

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

!132

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

!133

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

!134

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

!135

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

!136

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort

!137

Pick first element in unsorted
region and put it in right place

in sorted region

Unsorted

Sorted

Insertion Sort Analysis

Execution time DOES depend on initial arrangement of data

Worst case: O(n2) comparisons and data moves

Best case: O(n) comparisons and data moves

Stable

If array is already sorted Insertion sort will do only n
comparisons and no swaps => good choice for small n and
data likely somewhat sorted

!138

!139

template<typename ItemType>
void insertionSort(ItemType the_array[], size_t size)
{
 // unsorted = first index of the unsorted region,
 // Initially, sorted region is the_array[0],
 // unsorted region is the_array[1 ... size-1].
 // In general, sorted region is the_array[0 ... unsorted-1],
 // unsorted region the_array[unsorted ... size-1]
 for (int unsorted = 1; unsorted < size; unsorted++)
 {
 // At this point, the_array[0 ... unsorted-1] is sorted.
 // Keep swapping item to be inserted currently at
 // the_array[unsorted] with items at lower indices
 // as long as its value is > the index of the item
 int current = unsorted; // currently being inserted
 while ((current > 0) &&
 (the_array[current - 1] > the_array[current]))
 {
 swap(the_array[current], the_array[current - 1]); // swap
 current--;
 } // end while
 } // end for
} // end insertionSort

template<typename ItemType>
void insertionSort(ItemType the_array[], size_t size)
{
 // unsorted = first index of the unsorted region,
 // Initially, sorted region is the_array[0],
 // unsorted region is the_array[1 ... size-1].
 // In general, sorted region is the_array[0 ... unsorted-1],
 // unsorted region the_array[unsorted ... size-1]
 for (int unsorted = 1; unsorted < size; unsorted++)
 {
 // At this point, the_array[0 ... unsorted-1] is sorted.
 // Keep swapping item to be inserted currently at
 // the_array[unsorted] with items at lower indices
 // as long as its value is > the index of the item
 int current = unsorted; // currently being inserted
 while ((current > 0) &&
 (the_array[current - 1] > the_array[current]))
 {
 swap(the_array[current], the_array[current - 1]); // swap
 current--;
 } // end while
 } // end for
} // end insertionSort

!140

Pass
O(n)

O(n)

O(n2)

Raise your hand if you had
Insertion Sort

!141

What we have so far

!142

Worst Case Best Case

Selection Sort O(n2) O(n2)

Bubble Sort O(n2) O(n)

Insertion Sort O(n2) O(n)

Lecture Activity

Sort the array using Insertion Sort 
Show the entire array after each comparison/swap
operation and at each step mark clearly the division
between the sorted and unsorted portions of the array

!143

5 8 3 4 9

5 8 3 4 9

Pick first element in
unsorted region and put it in
right place in sorted region

2 7

2 7

!144

5 8 3 4 9

5 8 3 4 9

2 7

2 7

5 3 8 4 9

3 5 8 4 9

2 7

2 7

3 5 4 8 9 2 7

3 4 5 8 9 2 7

3 4 5 8 9 2 7

3 4 5 8 2 9 7

3 4 5 2 8 9 7

3 4 2 5 8 9 7

3 2 4 5 8 9 7

2 3 4 5 8 9 7

2 3 4 5 8 7 9

2 3 4 5 7 8 9

!145

https://www.toptal.com/developers/sorting-algorithms

What we have so far

!146

Worst Case Best Case

Selection Sort O(n2) O(n2)

Bubble Sort O(n2) O(n)

Insertion Sort O(n2) O(n)

Can we do better?

!147

Can we do better?

!148

Divide and Conquer!!!

Merge Sort

!149

Understanding O(n2)

!150

76108 158195523 59914 43100 200 2743 11260 5642 932

T(n)

Understanding O(n2)

!151

76108 158195523 59914 43100 200 2743 11260 5642 932

T(n)

10852314 43100 200 2743 76 158195 599 11260 5642 932

Understanding O(n2)

!152

76108 158195523 59914 43100 200 2743 11260 5642 932

T(n)

10852314 43100 200 2743 76 158195 599 11260 5642 932

T(1/2n) T(1/2n)

Understanding O(n2)

!153

76108 158195523 59914 43100 200 2743 11260 5642 932

T(n)

10852314 43100 200 2743 76 158195 599 11260 5642 932

T(1/2n) T(1/2n)

(n/2)2 = n2/4

Understanding O(n2)

!154

76108 158195523 59914 43100 200 2743 11260 5642 932

T(n)

10852314 43100 200 2743 76 158195 599 11260 5642 932

(n/2)2 = n2/4

T(1/2n) ≈ 1/4 T(n) T(1/2n) ≈ 1/4 T(n)

Understanding O(n2)

!155

76108 158195523 59914 43100 200 2743 11260 5642 932

T(n)

108 52314 43 100 200 2743 76 158 195 59911 2605 642 932

(n/2)2 = n2/4

T(1/2n) ≈ 1/4 T(n) T(1/2n) ≈ 1/4 T(n)

Key Insight: Merge is linear

!156

2 1 34 57 68 910

Key Insight: Merge is linear

!157

2 1 34 57 68 910

Key Insight: Merge is linear

!158

2 34 57 68 910

1

Key Insight: Merge is linear

!159

2 34 57 68 910

1

Key Insight: Merge is linear

!160

34 57 68 910

21

Key Insight: Merge is linear

!161

34 57 68 910

21

Key Insight: Merge is linear

!162

4 57 68 910

21 3

Key Insight: Merge is linear

!163

4 57 68 910

21 3

Key Insight: Merge is linear

!164

57 68 910

21 3 4

Key Insight: Merge is linear

!165

57 68 910

21 3 4

Key Insight: Merge is linear

!166

7 68 910

21 3 4 5

Key Insight: Merge is linear

!167

7 68 910

21 3 4 5

Key Insight: Merge is linear

!168

7 8 910

21 3 4 5 6

Key Insight: Merge is linear

!169

7 8 910

21 3 4 5 6

Key Insight: Merge is linear

!170

8 910

21 3 4 5 76

Key Insight: Merge is linear

!171

8 910

21 3 4 5 76

Key Insight: Merge is linear

!172

910

21 3 4 5 76 8

Key Insight: Merge is linear

!173

910

21 3 4 5 76 8

Key Insight: Merge is linear

!174

10

21 3 4 5 76 8 9

Key Insight: Merge is linear

!175

10

21 3 4 5 76 8 9

Key Insight: Merge is linear

!176

21 3 4 5 76 8 9 10

Key Insight: Merge is linear

!177

21 3 4 5 76 8 9 10

Each step makes one comparison and
reduces the number of elements to

be merged by 1.
If there are n total elements to be

merged, merging is O(n)

Divide and Conquer

!178

76108 158195523 59914 43100 200 2743 11260 5642 932

T(n)

108 52314 43 100 200 27476 158 195 59911 26064 932

T(1/2n) ≈ 1/4 T(n) T(1/2n) ≈ 1/4 T(n)

Divide and Conquer

!179

76108 158195523 59914 43100 200 2743 11260 5642 932

T(n)

108 52314 43 100 200 2743 76 158 195 59911 2605 642 932

Speed up insertion sort by a factor of two by splitting
in half, sorting separately and merging results!

T(1/2n) ≈ 1/4 T(n) T(1/2n) ≈ 1/4 T(n)

108 52314 43 100 200 27476 158 195 59911 26064 932

T(n) ≈ 1/2 T(n) + n

Divide and Conquer

Splitting in two gives 2x improvement.

!180

Divide and Conquer

Splitting in two gives 2x improvement.

Splitting in four gives 4x improvement.

!181

Divide and Conquer

Splitting in two gives 2x improvement.

Splitting in four gives 4x improvement.

Splitting in eight gives 8x improvement.

!182

Divide and Conquer

Splitting in two gives 2x improvement.

Splitting in four gives 4x improvement.

Splitting in eight gives 8x improvement.

What if we never stop splitting?

!183

Merge Sort

!184

76108 158195523 59914 43 200 2743 11260 642 932

7610852314 43 200 2743 158195 599 11260 642 932

14 43 2003 76108523274 158195 599 2 11260 64 932

14 3 43 200 523274 76108 195 599 158 2 11260 64 932

14 3 43 200 523274 76108 195 599 158 2 11260 64 932

Merge Sort

!185

76108 158195523 59914 43 200 2743 11260 642 932

7610852314 43 200 2743 158195 599 11260 642 932

14 43 2003 76108523274 158195 599 2 11260 64 932

14 3 43 200 523274 76108 195 599 158 2 11260 64 932

14 3 43 200 523274 76108 195 599 158 2 11260 64 932

Merge Sort

!186

76108 158195523 59914 43 200 2743 11260 642 932

7610852314 43 200 2743 158195 599 11260 642 932

14 43 2003 76108523274 158195 599 2 11260 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 11260 64 932

Merge Sort

!187

76108 158195523 59914 43 200 2743 11260 642 932

7610852314 43 200 2743 158195 599 11260 642 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 11260 64 932

Merge Sort

!188

76108 158195523 59914 43 200 2743 11260 642 932

5232742003 43 76 10814 262 11 195158 59964 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 11260 64 932

Merge Sort

!189

7664 19510843 1582 11 14 263 523274 599200 932

5232742003 43 76 10814 262 11 195158 59964 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 11260 64 932

Merge Sort

!190

7664 19510843 1582 11 14 263 523274 599200 932

5232742003 43 76 10814 262 11 195158 59964 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 11260 64 932

Merge Sort Analysis

!191

7664 19510843 1582 11 14 263 523274 599200 932

5232742003 43 76 10814 262 11 195158 59964 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 11260 64 932

O(n)

O(n)

O(n)

O(n)

Merge Sort Analysis

!192

7664 19510843 1582 11 14 263 523274 599200 932

5232742003 43 76 10814 262 11 195158 59964 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 11260 64 932

Merge n how many times?

n

n/2

n/4

. . .

n/2k

Merge Sort Analysis

!193

7664 19510843 1582 11 14 263 523274 599200 932

5232742003 43 76 10814 262 11 195158 59964 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 11260 64 932

Merge n how may times? n/2k = 1 
 n = 2k  

 log2 n = k

n

n/2

n/4

. . .

n/2k

Merge Sort Analysis

!194

7664 19510843 1582 11 14 263 523274 599200 932

5232742003 43 76 10814 262 11 195158 59964 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 11260 64 932

n

n/2

n/4

. . .

n/2k

Merge n elements log2 n times

Merge Sort Analysis

!195

7664 19510843 1582 11 14 263 523274 599200 932

5232742003 43 76 10814 262 11 195158 59964 932

3 43 20014 52327410876 1952 158 599 2611 64 932

3 14 43 200 523274 10876 195 599 2 158 2611 64 932

14 3 43 200 523274 76108 195 599 158 2 11260 64 932

O(n log n)

O(n)

O(n)

O(n)

O(n)

Merge Sort

How would you code this?

!196

Merge Sort

How would you code this?

Hint: Divide and Conquer!!!

!197

Merge Sort

void mergeSort(array)
{
 if array size <= 1
 return //base case
 split array into left_array and right_array
 mergeSort(left_array)
 mergeSort(right_array)

 merge(left_array, right_array, array)  

}

!198

Now sorted: contains left and
right merged

Merge Sort Analysis

Execution time does NOT depend on initial arrangement of data

Worst Case: O(n log n) comparisons and data moves

Best Case: O(n log n) comparisons and data moves

Stable

Best we can do with comparison-based sorting that does not rely
on a data structure in the worst case => can’t beat O(n log n)

Space overhead: auxiliary array at each merge step

!199

What we have so far

!200

Worst Case Best Case

Selection Sort O(n2) O(n2)

Insertion Sort O(n2) O(n)

Bubble Sort O(n2) O(n)

Merge Sort O(n log n) O(n log n)

Quick Sort

!201

Quick Sort

!202

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

!203

pivot

<= pivot

> pivot

Partition

Quick Sort

!204

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

!205

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

!206

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

swap

Partition

Quick Sort

!207

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

!208

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

!209

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

!210

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

swap

Partition

Quick Sort

!211

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

!212

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

!213

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

!214

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

!215

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

swap

Partition

Quick Sort

!216

pivot

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

Partition

Quick Sort

!217

Select a pivot. Arrange other entries
s.t. entries in left partition are ≤ pivot

and entries in right partition are > pivot

<= pivot

> pivot

≤ pivot > pivot
quickSort() quickSort()

Partition

Quick Sort Analysis

Divide and Conquer

n comparisons for each partition

How many subproblems? => Depends on pivot selection

Ideally partition divides problem into two n/2
subproblems for log(n) recursive calls (Best case)

Possibly (though unlikely) each partition has 1 empty
subarray for n recursive calls (Worst case)

!218

template<typename ItemType>
void quickSort(ItemType the_array[], int first, int last)
{
 if (last - first + 1 < MIN_SIZE)
 {
 insertionSort(the_array, first, last);
 }
 else
 {
 // Create the partition: S1 | Pivot | S2
 int pivot_index = partition(the_array, first, last);

 // Sort subarrays S1 and S2
 quickSort(the_array, first, pivot_index);
 quickSort(the_array, pivotIndex + 1, last);
 } // end if
} // end quickSort

!219

Optimization

Optimization

How to select pivot?

!220

How to select pivot?

Ideally median  
 Need to sort array to find median

Other ideas? 
  

!221

How to select pivot?

Ideally median  
 Need to sort array to find median

Other ideas? 
 Pick first 

!222

95

How to select pivot?

Ideally median  
 Need to sort array to find median

Other ideas? 
 Pick first, middle, last position and order them
 making middle the pivot

!223

695 13

How to select pivot?

Ideally median  
 Need to sort array to find median

Other ideas? 
 Pick first, middle, last position and order them
 making middle the pivot

!224

136 95

pivot

Quick Sort Analysis
Execution time DOES depend on initial arrangement of data AND on
PIVOT SELECTION (luck?) => on random data can be faster than Merge
Sort

Possible optimization (e.g. smart pivot selection, speed up base case,
iterative instead of recursive implementation) can improve actual runtime
-> fastest comparison-based sorting algorithm on average

Worst Case: O(n2) comparisons and data moves

Best Case: O(n log n) comparisons and data moves

Unstable

!225

!226

Worst Case Best Case

Selection Sort O(n2) O(n2)

Insertion Sort O(n2) O(n)

Bubble Sort O(n2) O(n)

Merge Sort O(n log n) O(n log n)

Quick Sort O(n2) O(n log n)

!227

https://www.toptal.com/developers/sorting-algorithms

!228

https://www.youtube.com/watch?v=kPRA0W1kECg

