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Abstract Data Types
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Stack
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Stack

A data structure representing a stack of things 

Objects can be pushed onto the stack or 
popped from the stack 
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Stack

A data structure representing a stack of things 

Objects can be pushed onto the stack or 
popped from the stack 

LIFO: Last In First Out 

Only top of stack is accessible (top), no other 
objects on the stack are visible
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Applications

Very simple structure 

Many applications:  
 program stack 
 balancing parenthesis 
 evaluating postfix expressions 
 backtracking 
 . . . and more
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Program Stack

!13



Program Stack

1  void f(int x, int y)  
2  {  
3   int a;  
4   // stuff here  
5   if(a<13) 
6   a = g(a); 
7   // stuff here  
8  } 

9  int g(int z)  
10 {  
11   int p ,q;  
12   // stuff here  
13   return q;  
14 } 
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Program Stack
1  void f(int x, int y)  
2  {  
3   int a;  
4   // stuff here  
5   if(a<13) 
6   a = g(a); 
7   // stuff here  
8  } 

9  int g(int z)  
10 {  
11   int p ,q;  
12   // stuff here  
13   return q;  
14 } 

Stack Frame 
for f()

parameters

return address

local variablesa

x 
y
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Address of instruction  
after call to f()

. . .
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Stack Frame 
for f()

Stack Frame 
for g()

parameters

parameters

return address

return address

local variables

local variablesa

p 
q
x 
y

z

Address of instruction  
after call to f()

Address of  
instruction on line 7

. . .

. . .

1  void f(int x, int y)  
2  {  
3   int a;  
4   // stuff here  
5   if(a<13) 
6   a = g(a); 
7   // stuff here  
8  } 

9  int g(int z)  
10 {  
11   int p ,q;  
12   // stuff here  
13   return q;  
14 } 
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Stack Frame 
for f()

parameters

return address

local variablesa

x 
y

Address of instruction  
after call to f()

. . .

1  void f(int x, int y)  
2  {  
3   int a;  
4   // stuff here  
5   if(a<13) 
6   a = g(a); 
7   // stuff here  
8  } 

9  int g(int z)  
10 {  
11   int p ,q;  
12   // stuff here  
13   return q;  
14 } 



Balancing Parentheses

!18



Balancing Parentheses

!19

int f(){if(x*(y+z[i])<47){x += y}} 
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int f(){if(x*(y+z[i])<47){x += y}} 

Finished reading 
Stack is empty 

Parentheses are balanced

pop



Balancing Parentheses
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int f(){if(x*(y+z[i])<47){x += y} 

Finished reading 
Stack not empty 

Parentheses NOT balanced

{



Balancing Parentheses
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for(char ch : st)  
{

if ch is an open parenthesis character  
push it on the stack

else if ch is a close parenthesis character  
if it matches the top of the stack  
pop the stack  
else  

return unbalanced  
// else it is not a parenthesis 

}

if stack is empty  
return balanced

else
return unbalanced  



Evaluating  
Postfix Expressions
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Postfix Expressions

Operator applies to the two operands immediately 
preceding it 

!56

Infix: 
2 * (3 + 4) 

2 * 3 + 4

Postfix: 
2 3 4 + * 

2 3 * 4 +



Evaluating Postfix Expressions

Operator applies to the two operands immediately 
preceding it 

Assumptions / simplifications:  
 - String is syntactically correct postfix expression 
 - No unary operators 
 - No exponentiation operation 
 - Operands in string are single integer values
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Postfix: 
2 3 4 + *



Evaluating Postfix Expressions
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Postfix: 
2 3 4 + * 2
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Postfix: 
2 3 4 + *
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Postfix: 
2 3 4 + *

2

3
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Postfix: 
2 3 4 + * 4 +

2

3



Evaluating Postfix Expressions
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Postfix: 
2 3 4 + * 34 + 2



Evaluating Postfix Expressions
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Postfix: 
2 3 4 + * 34 + = 7 2



2

Evaluating Postfix Expressions
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Postfix: 
2 3 4 + * 7
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Postfix: 
2 3 4 + *
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Postfix: 
2 3 4 + * 27 *



Evaluating Postfix Expressions
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Postfix: 
2 3 4 + * 27 * = 14



Evaluating Postfix Expressions
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Postfix: 
2 3 4 + * 14

Done reading string 
The top of the stack 

is the result



Evaluating Postfix Expressions

Operator applies to the two operands immediately 
preceding it 

Assumptions / simplifications: 
 - string is syntactically correct postfix expression 
 - No unary operators 
 - No exponentiation operation 
 - Operands in string are single integer values
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Postfix: 
2 3 * 4 + 



Evaluating Postfix Expressions
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Postfix: 
2 3 * 4 + 2



Evaluating Postfix Expressions
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Postfix: 
2 3 * 4 + 

2

3



Evaluating Postfix Expressions
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Postfix: 
2 3 * 4 + 3 * 2



Evaluating Postfix Expressions
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3
Postfix: 
2 3 * 4 + 2* = 6



Evaluating Postfix Expressions
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Postfix: 
2 3 * 4 + 6



4

Evaluating Postfix Expressions
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Postfix: 
2 3 * 4 + 

6



Evaluating Postfix Expressions
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Postfix: 
2 3 * 4 + 4 + 6



Evaluating Postfix Expressions
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Postfix: 
2 3 * 4 + 64 10+ =



Evaluating Postfix Expressions

!80

Postfix: 
2 3 * 4 + 10

Done reading string 
The top of the stack 

is the result



Evaluating Postfix Expressions

for(char ch : st)  
{

if ch is an operand  
push it on the stack

else // ch is an operator op  
{  

//evaluate and push the result
operand2 = pop stack  
operand1 = pop stack  
result = operand1 op operand2  
push result on stack

}  
}
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Lecture Activity

Describe an algorithm that translates the infix expression 
below into postfix (you can use drawings to explain): 

Hint: use 2 stacks, one for operators and parentheses 
another one for the operands and postfix expression. 
Once converted use the empty stack to invert the order
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Infix: 
2 * (3 + 4)

Postfix: 
2 3 4 + *
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2

3
4

(
+

Infix: 
2 * (3 + 4)

Postfix: 
2 3 4 + *

2

3
4

*
+

1. Read characters onto 
corresponding stack until ‘)’

2. Pop operator stack and push  
it onto postfix stack ignoring ‘(‘

Postfix  
Stack

Operator  
Stack

Postfix  
Stack

Operator  
Stack

*

Postfix  
Stack

Operator  
Stack

3. Push everything onto empty 
stack to invert 

Then read pop and print.

2

3

4

*
+
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2

3
(

Infix: 
(2 * 3 )+ 4

Postfix: 
2 3 *4 + 

2

3

4

*

+

1. Read characters 
onto corr. stack until ‘)’ 

or end of string

2. If reading a ‘)’, move operators 
to Postfix Stack  until a ‘(‘ 

discard it and continue reading string

Postfix  
Stack

Operator  
Stack

Postfix  
Stack

Operator  
Stack

*

2

3
*

Postfix  
Stack

Operator  
Stack

3. Keep reading  
until ‘)’ -> 2. 

or end of string ->  4.

4. Move operators to  
Postfix Stack

2

3

4

*

+

Postfix  
Stack

Operator  
Stack



Infix: 
(2 * 3 )+ 4

Postfix: 
2 3 *4 + 

2
3

4
*

+

4. Move operators to  
Postfix Stack

Postfix  
Stack

Operator  
Stack

Postfix  
Stack

Operator  
Stack

5. Pop and push onto empty  
stack to invert, then print

2

3

4

*

+



Search a Flight Map

Fly from Origin to Destination following map 

1. Reach destination 

2. Reach city with no departing flights (dead end) 

3. Go in circles forever 
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Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 
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P
Origin = P , Destination = Z

C = visited
C = backtracked
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C = backtracked
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Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!90

P
Origin = P , Destination = Z

R

X

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!91

P
Origin = P , Destination = Z

R

X

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!92

P
Origin = P , Destination = Z

R

X

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!93

P
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C = backtracked
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Avoid traveling in circles by marking visited cities 
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Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 
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Origin = P , Destination = Z

R

X

W

S

T
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P

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 
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Origin = P , Destination = Z

R

X

W

S

T

Y

Z

P

C = visited
C = backtracked



Backtracking
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Origin = P , Destination = Z

P



P

Backtracking
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Origin = P , Destination = Z

R



P

Backtracking
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Origin = P , Destination = Z

R

X



P

Backtracking
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Origin = P , Destination = Z

R



Backtracking
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Origin = P , Destination = Z

P



P
W

Backtracking
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Backtracking
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Origin = P , Destination = Z

S



P
W

Backtracking
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Origin = P , Destination = Z

S
T



Backtracking
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Origin = P , Destination = Z
P
W
S



Backtracking
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Origin = P , Destination = Z

P
W



P
W

Backtracking
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Origin = P , Destination = Z

Y



P
W

Y

Backtracking
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Origin = P , Destination = Z

Z



Backtracking

while(not found flights from origin to destination)  
{

if no flight exists from city on top of stack to 
unvisited destination  

pop the stack //BACKTRACK
else  
{  

select an unvisited city C accessible from city 
currently at top of stack  
push C on stack  
mark C as visited

}
}
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Program Stack and Recursion

Recursion works because function waiting for result/
return from recursive call are on program stack 

Order of execution determined by stack 
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More Applications

Balancing anything!  
 -html tags (e.g <p> matches </p> 

Reverse characters in a word or words in a sentence 

Undo mechanism for editors or backups 

Traversals (graphs / trees) 

. . . 
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Stack ADT
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#ifndef STACK_H_  
#define STACK_H_  
 
template<<typename ItemType>  
class Stack  
{  
 
public:  

Stack();  
void push(const ItemType& new_entry); //adds an element to top of stack  
void pop(); // removes element from top of stack  
ItemType top() const; // returns a copy of element at top of stack  
int size() const; // returns the number of elements in the stack  
bool isEmpty() const;//returns true if no elements on stack, else false  

 
private:  
          //implementation details here

};    //end Stack  
 
#include "Stack.cpp"  
#endif // STACK_H_`


