
Stack ADT

Tiziana Ligorio
!1



Today’s Plan

Questons? 

Stack ADT

!2



Abstract Data Types

Bag 

List 

Stack

!3



Stack

A data structure representing a stack of things 

Objects can be pushed onto the stack or 
popped from the stack 

!4

34



Stack

A data structure representing a stack of things 

Objects can be pushed onto the stack or 
popped from the stack 

!5

34



Stack

A data structure representing a stack of things 

Objects can be pushed onto the stack or 
popped from the stack 

!6

127

34



Stack

A data structure representing a stack of things 

Objects can be pushed onto the stack or 
popped from the stack 

!7

34

127



Stack

A data structure representing a stack of things 

Objects can be pushed onto the stack or 
popped from the stack 

!8

13

34

127



Stack

A data structure representing a stack of things 

Objects can be pushed onto the stack or 
popped from the stack 

!9

34

127

13



Stack

A data structure representing a stack of things 

Objects can be pushed onto the stack or 
popped from the stack 

!10

13

34

127



Stack

A data structure representing a stack of things 

Objects can be pushed onto the stack or 
popped from the stack 

LIFO: Last In First Out 

Only top of stack is accessible (top), no other 
objects on the stack are visible

!11

34

127



Applications

Very simple structure 

Many applications:  
 program stack 
 balancing parenthesis 
 evaluating postfix expressions 
 backtracking 
 . . . and more

!12



Program Stack

!13



Program Stack

1  void f(int x, int y)  
2  {  
3   int a;  
4   // stuff here  
5   if(a<13) 
6   a = g(a); 
7   // stuff here  
8  } 

9  int g(int z)  
10 {  
11   int p ,q;  
12   // stuff here  
13   return q;  
14 } 

!14



Program Stack
1  void f(int x, int y)  
2  {  
3   int a;  
4   // stuff here  
5   if(a<13) 
6   a = g(a); 
7   // stuff here  
8  } 

9  int g(int z)  
10 {  
11   int p ,q;  
12   // stuff here  
13   return q;  
14 } 

Stack Frame 
for f()

parameters

return address

local variablesa

x 
y

!15

Address of instruction  
after call to f()

. . .



Program Stack

!16

Stack Frame 
for f()

Stack Frame 
for g()

parameters

parameters

return address

return address

local variables

local variablesa

p 
q
x 
y

z

Address of instruction  
after call to f()

Address of  
instruction on line 7

. . .

. . .

1  void f(int x, int y)  
2  {  
3   int a;  
4   // stuff here  
5   if(a<13) 
6   a = g(a); 
7   // stuff here  
8  } 

9  int g(int z)  
10 {  
11   int p ,q;  
12   // stuff here  
13   return q;  
14 } 



Program Stack

!17

Stack Frame 
for f()

parameters

return address

local variablesa

x 
y

Address of instruction  
after call to f()

. . .

1  void f(int x, int y)  
2  {  
3   int a;  
4   // stuff here  
5   if(a<13) 
6   a = g(a); 
7   // stuff here  
8  } 

9  int g(int z)  
10 {  
11   int p ,q;  
12   // stuff here  
13   return q;  
14 } 



Balancing Parentheses

!18



Balancing Parentheses

!19

int f(){if(x*(y+z[i])<47){x += y}} 



Balancing Parentheses

!20

int f(){if(x*(y+z[i])<47){x += y}} 



Balancing Parentheses

!21

int f(){if(x*(y+z[i])<47){x += y}} 



Balancing Parentheses

!22

int f(){if(x*(y+z[i])<47){x += y}} 



Balancing Parentheses

!23

int f(){if(x*(y+z[i])<47){x += y}} 



Balancing Parentheses

!24

int f(){if(x*(y+z[i])<47){x += y}} 

push

(



Balancing Parentheses

!25

int f(){if(x*(y+z[i])<47){x += y}} 

pop



Balancing Parentheses

!26

int f(){if(x*(y+z[i])<47){x += y}} 

push

{



Balancing Parentheses

!27

int f(){if(x*(y+z[i])<47){x += y}} 
{



Balancing Parentheses

!28

int f(){if(x*(y+z[i])<47){x += y}} 
{



{

Balancing Parentheses

!29

int f(){if(x*(y+z[i])<47){x += y}} 
(

push



Balancing Parentheses

!30

int f(){if(x*(y+z[i])<47){x += y}} 

{

(



Balancing Parentheses

!31

int f(){if(x*(y+z[i])<47){x += y}} 

{

(



{

(

Balancing Parentheses

!32

int f(){if(x*(y+z[i])<47){x += y}} 
(

push



Balancing Parentheses

!33

int f(){if(x*(y+z[i])<47){x += y}} 

{

(

(



Balancing Parentheses

!34

int f(){if(x*(y+z[i])<47){x += y}} 

{

(

(



Balancing Parentheses

!35

int f(){if(x*(y+z[i])<47){x += y}} 

{

(

(



{

(

(

Balancing Parentheses

!36

int f(){if(x*(y+z[i])<47){x += y}} 
[

push



Balancing Parentheses

!37

int f(){if(x*(y+z[i])<47){x += y}} 

{

(

(

[



Balancing Parentheses

!38

int f(){if(x*(y+z[i])<47){x += y}} 

pop

{

(

(



Balancing Parentheses

!39

int f(){if(x*(y+z[i])<47){x += y}} 

pop

{

(



Balancing Parentheses

!40

int f(){if(x*(y+z[i])<47){x += y}} 

{

(



Balancing Parentheses

!41

int f(){if(x*(y+z[i])<47){x += y}} 

{

(



Balancing Parentheses

!42

int f(){if(x*(y+z[i])<47){x += y}} 

{

(



Balancing Parentheses

!43

int f(){if(x*(y+z[i])<47){x += y}} 

pop

{



Balancing Parentheses

!44

int f(){if(x*(y+z[i])<47){x += y}} 

push

{

{



Balancing Parentheses

!45

int f(){if(x*(y+z[i])<47){x += y}} 

{

{



Balancing Parentheses

!46

int f(){if(x*(y+z[i])<47){x += y}} 

{

{



Balancing Parentheses

!47

int f(){if(x*(y+z[i])<47){x += y}} 

{

{



Balancing Parentheses

!48

int f(){if(x*(y+z[i])<47){x += y}} 

{

{



Balancing Parentheses

!49

int f(){if(x*(y+z[i])<47){x += y}} 

{

{



Balancing Parentheses

!50

int f(){if(x*(y+z[i])<47){x += y}} 

{

{



Balancing Parentheses

!51

int f(){if(x*(y+z[i])<47){x += y}} 

pop

{



Balancing Parentheses

!52

int f(){if(x*(y+z[i])<47){x += y}} 

Finished reading 
Stack is empty 

Parentheses are balanced

pop



Balancing Parentheses

!53

int f(){if(x*(y+z[i])<47){x += y} 

Finished reading 
Stack not empty 

Parentheses NOT balanced

{



Balancing Parentheses

!54

for(char ch : st)  
{

if ch is an open parenthesis character  
push it on the stack

else if ch is a close parenthesis character  
if it matches the top of the stack  
pop the stack  
else  

return unbalanced  
// else it is not a parenthesis 

}

if stack is empty  
return balanced

else
return unbalanced  



Evaluating  
Postfix Expressions

!55



Postfix Expressions

Operator applies to the two operands immediately 
preceding it 

!56

Infix: 
2 * (3 + 4) 

2 * 3 + 4

Postfix: 
2 3 4 + * 

2 3 * 4 +



Evaluating Postfix Expressions

Operator applies to the two operands immediately 
preceding it 

Assumptions / simplifications:  
 - String is syntactically correct postfix expression 
 - No unary operators 
 - No exponentiation operation 
 - Operands in string are single integer values

!57

Postfix: 
2 3 4 + *



Evaluating Postfix Expressions

!58

Postfix: 
2 3 4 + * 2



Evaluating Postfix Expressions

!59

Postfix: 
2 3 4 + *

2

3



Evaluating Postfix Expressions

!60

Postfix: 
2 3 4 + *

2

3
4



Evaluating Postfix Expressions

!61

Postfix: 
2 3 4 + *

2

3
4



Evaluating Postfix Expressions

!62

Postfix: 
2 3 4 + * 4 +

2

3



Evaluating Postfix Expressions

!63

Postfix: 
2 3 4 + * 34 + 2



Evaluating Postfix Expressions

!64

Postfix: 
2 3 4 + * 34 + = 7 2



2

Evaluating Postfix Expressions

!65

Postfix: 
2 3 4 + * 7



Evaluating Postfix Expressions

!66

Postfix: 
2 3 4 + *

2
7



Evaluating Postfix Expressions

!67

Postfix: 
2 3 4 + * 7 2



Evaluating Postfix Expressions

!68

Postfix: 
2 3 4 + * 27 *



Evaluating Postfix Expressions

!69

Postfix: 
2 3 4 + * 27 * = 14



Evaluating Postfix Expressions

!70

Postfix: 
2 3 4 + * 14

Done reading string 
The top of the stack 

is the result



Evaluating Postfix Expressions

Operator applies to the two operands immediately 
preceding it 

Assumptions / simplifications: 
 - string is syntactically correct postfix expression 
 - No unary operators 
 - No exponentiation operation 
 - Operands in string are single integer values

!71

Postfix: 
2 3 * 4 + 



Evaluating Postfix Expressions

!72

Postfix: 
2 3 * 4 + 2



Evaluating Postfix Expressions

!73

Postfix: 
2 3 * 4 + 

2

3



Evaluating Postfix Expressions

!74

Postfix: 
2 3 * 4 + 3 * 2



Evaluating Postfix Expressions

!75

3
Postfix: 
2 3 * 4 + 2* = 6



Evaluating Postfix Expressions

!76

Postfix: 
2 3 * 4 + 6



4

Evaluating Postfix Expressions

!77

Postfix: 
2 3 * 4 + 

6



Evaluating Postfix Expressions

!78

Postfix: 
2 3 * 4 + 4 + 6



Evaluating Postfix Expressions

!79

Postfix: 
2 3 * 4 + 64 10+ =



Evaluating Postfix Expressions

!80

Postfix: 
2 3 * 4 + 10

Done reading string 
The top of the stack 

is the result



Evaluating Postfix Expressions

for(char ch : st)  
{

if ch is an operand  
push it on the stack

else // ch is an operator op  
{  

//evaluate and push the result
operand2 = pop stack  
operand1 = pop stack  
result = operand1 op operand2  
push result on stack

}  
}

!81



Lecture Activity

Describe an algorithm that translates the infix expression 
below into postfix (you can use drawings to explain): 

Hint: use 2 stacks, one for operators and parentheses 
another one for the operands and postfix expression. 
Once converted use the empty stack to invert the order

!82

Infix: 
2 * (3 + 4)

Postfix: 
2 3 4 + *



!83

2

3
4

(
+

Infix: 
2 * (3 + 4)

Postfix: 
2 3 4 + *

2

3
4

*
+

1. Read characters onto 
corresponding stack until ‘)’

2. Pop operator stack and push  
it onto postfix stack ignoring ‘(‘

Postfix  
Stack

Operator  
Stack

Postfix  
Stack

Operator  
Stack

*

Postfix  
Stack

Operator  
Stack

3. Push everything onto empty 
stack to invert 

Then read pop and print.

2

3

4

*
+



!84

2

3
(

Infix: 
(2 * 3 )+ 4

Postfix: 
2 3 *4 + 

2

3

4

*

+

1. Read characters 
onto corr. stack until ‘)’ 

or end of string

2. If reading a ‘)’, move operators 
to Postfix Stack  until a ‘(‘ 

discard it and continue reading string

Postfix  
Stack

Operator  
Stack

Postfix  
Stack

Operator  
Stack

*

2

3
*

Postfix  
Stack

Operator  
Stack

3. Keep reading  
until ‘)’ -> 2. 

or end of string ->  4.

4. Move operators to  
Postfix Stack

2

3

4

*

+

Postfix  
Stack

Operator  
Stack



Infix: 
(2 * 3 )+ 4

Postfix: 
2 3 *4 + 

2
3

4
*

+

4. Move operators to  
Postfix Stack

Postfix  
Stack

Operator  
Stack

Postfix  
Stack

Operator  
Stack

5. Pop and push onto empty  
stack to invert, then print

2

3

4

*

+



Search a Flight Map

Fly from Origin to Destination following map 

1. Reach destination 

2. Reach city with no departing flights (dead end) 

3. Go in circles forever 

!86



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!87

P
Origin = P , Destination = Z

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!88

P
Origin = P , Destination = Z

R

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!89

P
Origin = P , Destination = Z

R

X

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!90

P
Origin = P , Destination = Z

R

X

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!91

P
Origin = P , Destination = Z

R

X

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!92

P
Origin = P , Destination = Z

R

X

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!93

P
Origin = P , Destination = Z

R

X

W

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!94

P
Origin = P , Destination = Z

R

X

W

S

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!95

P
Origin = P , Destination = Z

R

X

W

S

T

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!96

Origin = P , Destination = Z

R

X

W

S

T

P

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!97

Origin = P , Destination = Z

R

X

W

S

T

P

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!98

Origin = P , Destination = Z

R

X

W

S

T

P

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!99

Origin = P , Destination = Z

R

X

W

S

T

Y

P

C = visited
C = backtracked



Backtracking

Avoid dead end by backtracking 

Avoid traveling in circles by marking visited cities 

!100

Origin = P , Destination = Z

R

X

W

S

T

Y

Z

P

C = visited
C = backtracked



Backtracking

!101

Origin = P , Destination = Z

P



P

Backtracking

!102

Origin = P , Destination = Z

R



P

Backtracking

!103

Origin = P , Destination = Z

R

X



P

Backtracking

!104

Origin = P , Destination = Z

R



Backtracking

!105

Origin = P , Destination = Z

P



P
W

Backtracking

!106

Origin = P , Destination = Z



P
W

Backtracking

!107

Origin = P , Destination = Z

S



P
W

Backtracking

!108

Origin = P , Destination = Z

S
T



Backtracking

!109

Origin = P , Destination = Z
P
W
S



Backtracking

!110

Origin = P , Destination = Z

P
W



P
W

Backtracking

!111

Origin = P , Destination = Z

Y



P
W

Y

Backtracking

!112

Origin = P , Destination = Z

Z



Backtracking

while(not found flights from origin to destination)  
{

if no flight exists from city on top of stack to 
unvisited destination  

pop the stack //BACKTRACK
else  
{  

select an unvisited city C accessible from city 
currently at top of stack  
push C on stack  
mark C as visited

}
}

!113



Program Stack and Recursion

Recursion works because function waiting for result/
return from recursive call are on program stack 

Order of execution determined by stack 

!114



More Applications

Balancing anything!  
 -html tags (e.g <p> matches </p> 

Reverse characters in a word or words in a sentence 

Undo mechanism for editors or backups 

Traversals (graphs / trees) 

. . . 

!115



Stack ADT

!116

#ifndef STACK_H_  
#define STACK_H_  
 
template<<typename ItemType>  
class Stack  
{  
 
public:  

Stack();  
void push(const ItemType& new_entry); //adds an element to top of stack  
void pop(); // removes element from top of stack  
ItemType top() const; // returns a copy of element at top of stack  
int size() const; // returns the number of elements in the stack  
bool isEmpty() const;//returns true if no elements on stack, else false  

 
private:  
          //implementation details here

};    //end Stack  
 
#include "Stack.cpp"  
#endif // STACK_H_`


