Stack ADT

Tiziana Ligorio

Today'’s Plan

Questons?

Stack ADT

Abstract Data Types

Bag
List

Stack

Stack

A data structure representing a stack of things

Objects can be pushed onto the stack or

popped from the stack

Stack

A data structure representing a stack of things

Objects can be pushed onto the stack or

popped from the stack

Stack

A data structure representing a stack of things

Objects can be pushed onto the stack or

popped from the stack

Stack

A data structure representing a stack of things

Objects can be pushed onto the stack or

popped from the stack

Stack

A data structure representing a stack of things

Objects can be pushed onto the stack or

popped from the stack

Stack

A data structure representing a stack of things

Objects can be pushed onto the stack or

popped from the stack

Stack

A data structure representing a stack of things

Objects can be pushed onto the stack or

popped from the stack

10

Stack

A data structure representing a stack of things

Objects can be pushed onto the stack or

popped from the stack

LIFO: Last In First Out

Only top of stack is accessible (top), no other
objects on the stack are visible

11

Applications

Very simple structure

Many applications:
program stack
balancing parenthesis
evaluating postfix expressions

backtracking
... and more

12

Program Stack

Program Stack

1 wvoid f(int x, int y)
2 A

3 int a;

4 // stuff here

5 if(a<l3)

6 a = g(a);

7 // stuff here

8 }

9 int g(int 2z)

10 {

11 int p ,9;

12 // stuff here
13 return q;

14 }

14

Program Stack

1l wvoid f(int x, int y)
X
2 { v parameters
3 int a; Add f instructi
4 // stuff here Stack Frame ;itsesrc::all:ior:‘]((): o return address
5 if(a<13) for ()
6 a = g(a); local variables
7 // stuff here
8

9 int g(int 2z)

10 {

11 int p ,q;

12 // stuff here
13 return q;j

14 }

15

Program Stack

a = g(a);
// stuff here

9 int g(int z)

10 {

11 int p ,qg;

12 // stuff here
13 return qg;

14 }

Stack Frame
for g()

1 wvoid f(int x, int y)
2 A

3 int a;

4 // stuff here

5 if(a<1l3)

6

7

8

Stack Frame
for f()

16

y 4

Address of
instruction on line 7

p
q
X

y

Address of instruction
after call to ()

parameters

return address

local variables
parameters

return address

local variables

Program Stack

1l wvoid f(int x, int y)
X
2 | , parameters
3 int aj; Address of instruction
4 // stuff here Stac;k Fframe after call to f() return address
5 if(a<13) or ()
6 a = g(a); local variables
7 // stuff here
8 }

9 int g(int z)

10 {

11 int p ,q;

12 // stuff here
13 return q;

14 }

17

Balancing Parentheses

18

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

T

19

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

|

20

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

21

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

22

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

23

Balancing Parentheses

push
int £(){if(x*(y+z[1])<47){x += y}}

24

Balancing Parentheses

pop
int £(){if(x*(y+2[1])<47){x += y}}

25

Balancing Parentheses

push
int £(){if(x*(y+z[1])<47){x += y}}

|

20

Balancing Parentheses

int £(){i1f(x*(y+z[1])<47){x += y}}

T

27

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

|

28

Balancing Parentheses

push
int £(){if(x*(y+2[1])<47){x += y}}

T

29

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

|

30

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

T

31

Balancing Parentheses

push
int £(){if(x*(y+2[1])<47){x += y}}

|

32

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

T

33

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

|

34

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

|

35

Balancing Parentheses

push
int £(){if(x*(y+2[1])<47){x += y}}

T

36

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

|

37

Balancing Parentheses

pop
int £(){if(x*(y+2[1])<47){x += y}}

T

38

Balancing Parentheses

pop
int £(){if(x*(y+2[1])<47){x += y}}

|

39

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

|

40

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

|

41

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

T

42

Balancing Parentheses

POp
int £(){if(x*(y+z[1])<47){x += y}}

|

43

Balancing Parentheses

push
int £(){if(x*(y+2[1])<47){x += y}}

|

44

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

T

45

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

46

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

T

47

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

T

48

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

49

Balancing Parentheses

int £(){if(x*(y+z[1])<47){x += y}}

T

50

Balancing Parentheses

POp
int £(){if(x*(y+z[1])<47){x += y}}

|

o1

Balancing Parentheses

Pop

int £(){if(x*(y+z[1])<47){x += y}}

T

Finished reading

Stack is empty
Parentheses are balanced

52

Balancing Parentheses

int £(){if(x*(y+2[1i])<47){x += y}

Finished reading

Stack not empty
Parentheses balanced

53

Balancing Parentheses

for(char ch : st)
{
if ch is an open parenthesis character
push it on the stack
else if ch is a close parenthesis character
if it matches the top of the stack
pop the stack
else
return unbalanced
// else it is not a parenthesis

}

if stack is empty
return balanced
else
return unbalanced

54

Evaluating
Posttix Expressions

Posttix Expressions

Operator applies to the two operands immediately
preceding it

Infix: Postfix:
2% (3 +4) 234 +*

2*3+4 234 +

56

Evaluating Postfix Expressions

Operator applies to the two operands immediately
preceding it

Postfix:
234 +*

Assumptions / simplifications:
- String is syntactically correct postfix expression
- No unary operators
- No exponentiation operation
- Operands in string are single integer values

57

Evaluating Postfix Expressions

Postfix:
234+~

|

58

Evaluating Postfix Expressions

Postfix:
234+~

|

59

Evaluating Postfix Expressions

Postfix:
234+~

|

60

Evaluating Postfix Expressions

Postfix:
234+~

T

61

Evaluating Postfix Expressions

Postfix:
234+ l *

T

62

Evaluating Postfix Expressions

Postfix:
234+ l * l

T

63

Evaluating Postfix Expressions

Postfix:
23342(* 4+5-0

T

64

Evaluating Postfix Expressions

Postfix:
234+ *

T

65

Evaluating Postfix Expressions

Postfix:
234+ *

T

66

Evaluating Postfix Expressions

Postfix:
234 +7 l

T

6/

Evaluating Postfix Expressions

Postfix: .
234 +7 l 2

T

68

Evaluating Postfix Expressions

Postfix: .
234 +7 l i = .

T

69

Evaluating Postfix Expressions

v

Postfix:
234+ *

Done reading string

The top of the stack
is the result

70

Evaluating Postfix Expressions

Operator applies to the two operands immediately
preceding it

Postfix:
23 %4 +

Assumptions / simplifications:
- string is syntactically correct posttix expression
- No unary operators
- No exponentiation operation
- Operands in string are single integer values

Ia

Evaluating Postfix Expressions

Postfix:
23 %4 +

|

(2

Evaluating Postfix Expressions

Postfix:
23 %4 +

|

73

Evaluating Postfix Expressions

Postfix: .
23%4 + l

T

74

Evaluating Postfix Expressions

Postfix: .
23%4 + l | = l

T

75

Evaluating Postfix Expressions

Postfix:
23 %4 +

T

/6

Evaluating Postfix Expressions

Postfix:
23 %4 +

|

’r’

Evaluating Postfix Expressions

Postfix:
23 %4 +

T

4

/8

Evaluating Postfix Expressions

42 +0-Ho

Postfix:
23 %4 +

T

79

Evaluating Postfix Expressions

v

Postfix:
23 %4 +

T

Done reading string

The top of the stack
is the result

80

Evaluating Postfix Expressions

for(char ch : st)
{
if ch is an operand
push it on the stack
else // ch is an operator op
{
//evaluate and push the result
operand2 = pop stack
operandl = pop stack
result = operandl op operand2
push result on stack

}

81

Lecture Activity

Describe an algorithm that translates the intfix expression
below into postfix (you can use drawings to explain):

Postfix:
234 +*

Hint: use 2 stacks, one for operators and parentheses
another one for the operands and postfix expression.
Once converted use the empty stack to invert the order

Infix:
2* (3 + 4)

82

Infix:
2* (3 + 4)

1. Read characters onto
corresponding stack until ¥)’

Operator
Stack

Postfix
Stack

2. Pop operator stack and push
it onto postfix stack ignoring ‘("

Operator
Stack

Postfix
Stack

83

Postfix:
234 +*

3. Push everything onto empty
stack to invert
Then read pop and print.

Operator
Stack

Postfix
Stack

Infix: Postfix:
* *
2*3)+4 234 +
1. Read characters 2.1 readmg_a ', move o_per‘a‘tors 3. Ket_er: r eading 4. Move operators to
onto corr. stack until 9 to Postfix Stack until a (until)’ -> 2. Postfix Stack
discard it and continue reading string or end of string -> 4.

or end of string

Postfix Operator | Postfix Operator Postfix Operator | postfix Operator
Stack Stack Stack Stack Stack Stack Stack Stack

84

Infix:
(2*3)+ 4

4. Move operators to
Postfix Stack

Postfix Operator
Stack Stack

Postfix:
23 *4 +

5. Pop and push onto empty
stack to invert, then print

Postfix Operator
Stack Stack

Search a Flight Map

Fly from Origin to Destination following map
1. Reach destination

2. Reach city with no departing flights (dead end)

3. Go in circles forever

Backtracking

C = visited
Avoid dead end by backtracking — backtracked

Avoid traveling in circles by marking visited cities

Origin = P, Destination = Z 5

87

Backtracking

C = visited
Avoid dead end by backtracking — backtracked

Avoid traveling in circles by marking visited cities

Origin = P, Destination = Z 5

/

88

Backtracking

C = visited
Avoid dead end by backtracking — backtracked

Avoid traveling in circles by marking visited cities

Origin = P, Destination = Z

89

Backtracking

C = visited
Avoid dead end by backtracking — backtracked

Avoid traveling in circles by marking visited cities

Origin = P, Destination = Z

90

Backtracking

C = visited
Avoid dead end by backtracking — backtracked

Avoid traveling in circles by marking visited cities

Origin = P, Destination = Z 5

91

Backtracking

C = visited
Avoid dead end by backtracking — backtracked

Avoid traveling in circles by marking visited cities

Origin = P, Destination = Z 5

/

92

Backtracking

C = visited
Avoid dead end by backtracking — backtracked

Avoid traveling in circles by marking visited cities

/N,

Origin = P, Destination = Z

93

Backtracking

C = visited
Avoid dead end by backtracking — backtracked

Avoid traveling in circles by marking visited cities
/N
W
S

Origin = P, Destination = Z

94

Backtracking

C = visited
Avoid dead end by backtracking — backtracked

Avoid traveling in circles by marking visited cities
/N
W
/S

T

Origin = P, Destination = Z

95

Backtracking

C = visited
Avoid dead end by backtracking — backtracked

Avoid traveling in circles by marking visited cities
/N
W
/S

T

Origin = P, Destination = Z

96

Backtracking

C = visited
Avoid dead end by backtracking — backtracked

Avoid traveling in circles by marking visited cities
/N
W
/S

Origin = P, Destination = Z

97

Backtracking

C = visited
Avoid dead end by backtracking — backtracked

Avoid traveling in circles by marking visited cities
/N
W

Origin = P, Destination = Z

98

Backtracking

C = visited
Avoid dead end by backtracking — backtracked

Avoid traveling in circles by marking visited cities

/N,

Origin = P, Destination = Z

99

Backtracking

C = visited
Avoid dead end by backtracking — backtracked

Avoid traveling in circles by marking visited cities

/N,

Origin = P, Destination = Z

100

Backtracking

Origin = P, Destination = Z

101

Backtracking

Origin = P, Destination = Z

102

Backtracking

Origin = P, Destination = Z

103

Backtracking

Origin = P, Destination = Z

104

Backtracking

Origin = P, Destination = Z

105

Backtracking

Origin = P, Destination = Z

106

Backtracking

Origin = P, Destination = Z

107

Backtracking

Origin = P, Destination = Z

108

Backtracking

Origin = P, Destination = Z

109

Backtracking

Origin = P, Destination = Z

110

Backtracking

Origin = P, Destination = Z

111

Backtracking

Origin = P, Destination = Z

112

Backtracking

while(not found flights from origin to destination)
{
if no flight exists from city on top of stack to
unvisited destination
pop the stack //BACKTRACK
else
{
select an unvisited city C accessible from city
currently at top of stack
push C on stack
mark C as visited

113

Program Stack and Recursion

Recursion works because function waiting for result/
return from recursive call are on program stack

Order of execution determined by stack

114

More Applications
Balancing anything!
-html tags (e.g <p> matches </p>
Reverse characters in a word or words in a sentence
mechanism for editors or backups

Traversals (graphs / trees)

115

Stack ADT

#ifndef STACK H
#define STACK H

template<<typename ItemType>
class Stack

{
public:
Stack();
void push(const ItemType& new_entry); //adds an element to top of stack
void pop(); // removes element from top of stack
ItemType top() const; // returns a copy of element at top of stack
int size() const; // returns the number of elements in the stack
bool isEmpty() const;//returns true if no elements on stack, else false
private:
//implementation details here
}; //end Stack

#include "Stack.cpp"
#endif // STACK _H_~

116

