
Stack Implementations

Tiziana Ligorio
!1

Today’s Plan

Stack Implementations:  
 Array 
 Vector 
 Linked Chain

!2

Stack ADT
#ifndef STACK_H_  
#define STACK_H_  
 
template<<typename ItemType>  
class Stack  
{  
 
public:  

Stack();  
void push(const ItemType& new_entry); //adds an element to top of stack  
void pop(); // removes element from top of stack  
ItemType top() const; // returns a copy of element at top of stack  
int size() const; // returns the number of elements in the stack  
bool isEmpty() const;//returns true if no elements on stack, else false  

 
private:  
 //implementation details here

}; //end Stack  
 
#include "Stack.cpp"  
#endif // STACK_H_`

!3

ADT vs Data Structure
ADT is the logical/abstract description of the organization and operations on the
data

Data Structure is the representation/implementation of the ADT

We may have multiple implementations of the same ADT  
- 1 ADT 
- Multiple Data Structures

To complicate matters, a data structure may be implemented using other data
structures 
- stack implemented using vector  
- priority queue implemented using heap (more on this later)

If main() instantiates a stack, it is using a stack data structure, no matter which
implementation we choose

!4

Choose a Data Structure

Array?

Vector?

Linked chain?

!5

Choose a Data Structure

Inserting and removing from same end (LIFO)

Goal: minimize work - Ideally O(1)

What would you suggest?

!6

Array

!7

0 1 2 3 4 5

Where is the top
of the stack?

items_

Array

!8

0 1 2 3 4 5

Top of the stack:
items_[item_count_]

item_count_ = 0

max_items_ = 6

items_

Array

!9

O

0 1 2 3 4 5

Top of the stack:
items_[item_count_]

items_

push(‘O’)

item_count_ = 1

max_items_ = 6

Array

!10

O Z

0 1 2 3 4 5

Top of the stack:
items_[item_count_]

items_

push(‘Z’)

item_count_ = 2

max_items_ = 6

Array

!11

O Z B

0 1 2 3 4 5

Top of the stack:
items_[item_count_]

items_

push(‘B’)

item_count_ = 3

max_items_ = 6

Array

!12

O Z

0 1 2 3 4 5

Top of the stack:
items_[item_count_]

items_

pop()

item_count_ = 2

max_items_ = 6

Pops
items_[item_count_ -1]

Array Analysis

1 assignment + 1 increment/decrement = O(1)

size : O(1) 
isEmpty: O(1) 
push: O(1) 
pop : O(1) 
top : O(1)

GREAT!!!!

!13

Array Analysis

1 assignment + 1 increment/decrement = O(1)

size : O(1) 
isEmpty: O(1) 
push: O(1) 
pop : O(1) 
top : O(1)

GREAT???

!14

Array

!15

O Z B Y L P

0 1 2 3 4 5

Top of the stack:
items_[item_count_]

items_

push(’T’)

item_count_ = 6

max_items_ = 6

Sorry Stack is Full!!!

Vector

std::vector<T> some_vector;

So what is a vector really?

!16

Vector

std::vector<T> some_vector;

So what is a vector really?

!17

2
buffer_ =
len_ =
capacity_ = 5

Vector (simplified)

O Z

0 1 2 3 4

Push and pop same as
with arrays

Vector

std::vector<T> some_vector;

So what is a vector really?

!18

buffer_ =
len_ = 5
capacity_ = 5

Vector (simplified)

O Z B Y L

0 1 2 3 4

Stack is Full?

Vector

std::vector<T> some_vector;

So what is a vector really?

!19

buffer_ =
len_ = 5
capacity_ = ?

Vector (simplified)

O Z B Y L

0 1 2 3 4

No, I’ll Grow!!!

O Z B Y L

0 1 2 3 4 5 6 . . .

Lecture Activity

How much should it grow?

Write a short paragraph arguing the pros and cons of
growing by the amount you propose

!20

Vector Analysis

1 assignment + 1 increment/decrement = O(1)

size : O(1) 
isEmpty: O(1) 
push: O(1) 
pop : O(1) 
top : O(1)

GREAT!!!!

!21

Vector Analysis

1 assignment + 1 increment/decrement = O(1)

size : O(1) 
isEmpty: O(1) 
push: O(1) 
pop : O(1) 
top : O(1)

GREAT???

!22

Except when stack is full must: 
 - allocate new array 
 - copy elements in new array 
 - delete old array

Vector Analysis

1 assignment + 1 increment/decrement = O(1)

size : O(1) 
isEmpty: O(1) 
push: O(1) 
pop : O(1) 
top : O(1)

GREAT???

!23

Except when stack is full must: 
 - allocate new array O(1) 
 - copy elements in new array O(n) 
 - delete old array O(1)

How should Vector grow?

Sometimes 1 “step”

Sometimes n “steps”

Consider behavior over several pushes

!24

Vector Growth: a naive approach

std::vector<T> some_vector;

So what is a vector really?

!25

buffer_ =
len_ = 5
capacity_ = 6

Vector (simplified)

O Z B Y L

0 1 2 3 4

I’ll Grow!!!
I will add space for the

item to be added

O Z B Y L

0 1 2 3 4 5

Vector Growth: a naive approach

If vector grows by 1 each time, every push costs n “steps”

Cost of pushes:  
 1 + 2 + 3 + 4 + 5 + . . . + n  
= n (n+1)/2  

!26

Vector Growth: a naive approach

If vector grows by 1 each time, every push costs n “steps”

Cost of n pushes: 
 1 + 2 + 3 + 4 + 5 + . . . + n  
= n (n+1)/2  
= n2 /2 + n / 2 O(n2)

!27

Vector Growth: a better approach

std::vector<T> some_vector;

So what is a vector really?

!28

buffer_ =
len_ = 5
capacity_ = 7

Vector (simplified)

O Z B Y L

0 1 2 3 4

I’ll Grow!!!
I will add two more slots!

O Z B Y L

0 1 2 3 4 5 6

Vector Growth: a better approach

If vector grows by 2 each time,

Let a “hard push” be one where the whole vector needs
to be copied

When vector is not copied we have an “easy push”

Now half our pushes will be easy (1 step) and half will be
hard (n steps)

So if reconsider the work over several pushes?

!29

Analysis visualization adapted from Keith Schwarz

!30

Vector Growth: a better approach

!31Easy push Easy push Easy push
Hard push Hard push Hard push Hard pushEasy push

Vector Growth: a better approach

!32

Work Saved

Easy push Easy push Easy push
Hard push Hard push Hard push Hard push

By simply adding one extra “slot” we
roughly cut down the work by half on

average (over several pushes)

Easy push

Vector Growth: a better approach

!33Easy push Easy push Easy push
Hard push Hard push Hard push Hard push

Let’s look at it a different
way: what happens if I

spread the work over time?

Easy push

Vector Growth: a better approach

!34Easy push Easy push Easy push
Hard push Hard push Hard push Hard push

Let’s look at it a different
way: what happens if I

spread the work over time?

Easy push

Vector Growth: a better approach

!35Easy push Easy push Easy push
Hard push Hard push Hard push Hard push

Let’s look at it a different
way: what happens if I

spread the work over time?

Easy push

Vector Growth: a better approach

!36Easy push Easy push Easy push
Hard push Hard push Hard push Hard push

Easy push

Now compare with the
“naive” approach

Vector Growth: a better approach

!37Easy push Easy push Easy push
Hard push Hard push Hard push Hard push

Easy push

Now compare with the
“naive” approach

By simply adding one extra “slot”
we roughly cut down the work by

half (over several pushes)

Can we do better?

!38

Vector Growth: a much better approach

std::vector<T> some_vector;

So what is a vector really?

!39

buffer_ =
len_ = 5
capacity_ = 10

Vector (simplified)

O Z B Y L

0 1 2 3 4

I’ll Grow!!!
I’ll double my size!

O Z B Y L

0 1 2 3 4 5 6 7 8 9

!40

Vector Growth: a much better approach

Vector Growth: a much better approach

!41

Let’s spread the work over time

Vector Growth: a much better approach

!42

Let’s spread the work over time

Vector Growth: a much better approach

!43

Let’s spread the work over time

Vector Growth: a much better approach

!44

Let’s spread the work over time

Vector Growth: a much better approach

!45

Let’s spread the work over time

Vector Growth: a much better approach

!46

Let’s spread the work over time

Over time I can spread my work so that I have  
(OVER SEVERAL PUSHES) constant work

Vector Growth: a much better approach

!47

Let’s spread the work over time

Amortized
Analysis

Over time I can spread my work so that I have  
(OVER SEVERAL PUSHES) constant work

Vector Growth summarized

If it grows by 1, O(n2) over time (n pushes -
AMORTIZED ANALYSIS)

If it grows by 2, push takes roughly half the“steps”
but still O(n2) over time (n pushes - AMORTIZED
ANALYSIS)

If it doubles its size, push takes O(1) over time (n
pushes - AMORTIZED ANALYSIS)

!48

A steadily shrinking Stack

Let’s consider this application:

 - Push the 524,288th (219)element onto Stack which
 causes it to double it’s size to 1,048,576 (220) 
 - Reading an input file  
 - pop the elements that match 
 - manipulate input record accordingly 
 - repeat

!49

A steadily shrinking Stack

Let’s consider this application:

 - Push the 524,288th (219)element onto Stack which
 causes it to double it’s size to 1,048,576 (220) 
 - Reading an input file  
 - pop the elements that match 
 - manipulate input record accordingly 
 - repeat

!50

How much I pop will
depend on input

A steadily shrinking Stack

Let’s consider this application:

 - Push the 524,288th (219)element onto Stack which
 causes it to double it’s size to 1,048,576 (220) 
 - Reading an input file  
 - pop the elements that match 
 - manipulate input record accordingly 
 - repeat

!51

Assume a few
matches at each

iteration -> mostly
empty stack but it
will be around for a

long time!

Useless memory wasteI will not shrink!

Linked Chain

!52

top_

Linked Chain

!53

top_ new_node_ptr

push

Linked Chain

!54

top_ new_node_ptr

push

Linked Chain

!55

top_ new_node_ptr

push

Linked Chain

!56

top_

Linked Chain

!57

top_

push

new_node_ptr

Linked Chain

!58

top_

push

new_node_ptr

Linked Chain

!59

top_

push

new_node_ptr

Linked Chain

!60

top_

push

new_node_ptr

Linked Chain

!61

top_

Linked Chain

!62

top_

Linked Chain

!63

pop
temp_ptrtop_

Linked Chain

!64

pop
temp_ptr

top_

Linked Chain

!65

pop
temp_ptr

top_

Linked Chain

!66

pop
temp_ptr

top_

Linked Chain

!67

top_

Linked-Chain Analysis

1 assignment + 1 increment/decrement = O(1)

size : O(1) 
isEmpty: O(1) 
push: O(1) 
pop : O(1) 
top : O(1)

GREAT!!!! And there is no “Except” case here, every
operation is O(1)!

!68

To summarize

Array: O(1) for push and pop, but size is bounded

Vector: size is unbounded but  
 -Some push operations take O(1), others take
 O(n) -> O(1) over time (AMORTIZED ANALYSIS)  
 
Linked-Chain: O(1) for push and pop and size is
unbounded

!69

Implement Stack ADT

!70

What should we add
here to implement it as

a linked chain?

#ifndef STACK_H_  
#define STACK_H_  
 
template<<typename ItemType>  
class Stack  
{  
 
public:  

Stack();  
void push(const ItemType& new_entry); //adds an element to top of stack  
void pop(); // removes element from top of stack  
ItemType top() const; // returns a copy of element at top of stack  
int size() const; // returns the number of elements in the stack  
bool isEmpty() const;//returns true if no elements on stack, else false  

 
private:  
 //implementation details here

}; //end Stack  
 
#include "Stack.cpp"  
#endif // STACK_H_`

Implement Stack ADT#ifndef STACK_H_  
#define STACK_H_  
 
template<class T>  
class Stack  
{  
 
public:  

Stack();  
~Stack(); // destructor  
Stack(const Stack<T>& a_stack); //copy constructor  
void push(const T& newEntry); // adds an element to top of stack  
void pop(); // removes element from top of stack  
T top() const; // returns a copy of element at top of stack  
int size() const; // returns the number of elements in the stack  
bool isEmpty() const; //returns true if no elements on stack else false  

 
private:  
 Node<T>* top_; // Pointer to top of stack  
 int item_count; // number of items currently on the stack

}; //end Stack  
 
#include "Stack.cpp"  
#endif // STACK_H_

!71

