Stack Implementations

Tiziana Ligorio

Today'’s Plan

Stack Implementations:
Array

Vector
Linked Chain

Stack ADT

#ifndef STACK H
#define STACK H

template<<typename ItemType>
class Stack

{
public:
Stack();
void push(const ItemType& new_entry); //adds an element to top of stack
void pop(); // removes element from top of stack
ItemType top() const; // returns a copy of element at top of stack
int size() const; // returns the number of elements in the stack
bool isEmpty() const;//returns true if no elements on stack, else false
private:
//implementation details here
}; //end Stack

#include "Stack.cpp"
#endif // STACK _H_~

ADT vs Data Structure

ADT is the logical/abstract description of the organization and operations on the
data

Data Structure is the representation/implementation of the ADT

We may have multiple implementations of the same ADT
-1 ADT

- Multiple Data Structures

To complicate matters, a data structure may be implemented using other data
structures

- stack implemented using vector

- priority queue implemented using heap (more on this later)

It main() instantiates a stack, it is using a stack data structure, no matter which
implementation we choose

Choose a Data Structure

Array?
Vector?

Linked chain?

Choose a Data Structure

Inserting and removing from same end (LIFO)
Goal: minimize work - Ideally O(1

What would you suggest?

Array

items
0 1 p 3 4 5

Where is the top
of the stack?

Array

items
) L 2 3 4 S

item count = 0

max items = 6 items [item count]

Array

push(‘0")

items
0 1 p 3 4 5

item count =1
, Top of the stack:
max items = 6 : :
= = ltems [i1tem count]

Array

push(‘Z")

items
0 1 p 3 4 5

item count = 2

| max_items_ = 6_ o { Ltom, coun

max items = 6

items [item count]

10

Array

push(‘B’)

items
0 1 p 3 4 5

item count = 3

| max_items_ = 6_ o { Ltom, coun

max items = 6

items [item count]

11

Array

items
) L 2 3 4 S

Pops

items [item count -1]

item count = 2

max items = 6 items [item count]

12

Array Analysis

1 assignment + 1 increment/decrement = O(1)

size : O(1)
isEmpty: O(1)
push: O(1)
pop : O(1)
top : O(1)

GREAT!I

13

Array Analysis

1 assignment + 1 increment/decrement =

size : O(1
isEmpty: O]
push: O(1

pPop .
top .

14

Array

items
0 1 p 3 4 5

max items = 6

15

Vector

std: :vector<T> some vector;

So what is a vector really?

16

Vector

std: :vector<T> some vector;

So what is a vector really? Push and pop same as
with arrays

Vector (simplified)

0 L 2 3 4

17

Vector

std: :vector<T> some vector;

So what is a vector really?

Vector (simplified)

0 L 2 3 4

18

Vector

std: :vector<T> some vector;

Vector (simplified)

L 2 3
0 L 2 3 4 5 6 .

19

Lecture Activity

ow much should it grow?

Write a short paragraph arguing the pros and of
growing by the amount you propose

20

Vector Analysis

1 assignment + 1 increment/decrement = O(1)

size : O(1)
isEmpty: O(1)
push: O(1)
pop : O(1)
top : O(1)

GREAT!I

21

Vector Analysis

1 assignment + 1 increment/decrement = O(1

size : O(1
isEmpty: O]
push: O(1

pPop .
top .

when stack is full must:
- allocate new array
- copy elements in new array
- delete old array

22

Vector Analysis

1 assignment + 1 increment/decrement = O(1

size : O(1
isEmpty: O(1
push: O(1

pPop .
top .

when stack is full must:
- allocate new array O(
- copy elements in new array O(n
- delete old array O(1

23

How should Vector grow?

Sometimes 1 “step”
Sometimes n “steps”

Consider behavior over several pushes

24

Vector Growth: a naive approach

std: :vector<T> some vector;

Vector (simplified) :
‘ 1

2 3
0 L 2 3 4 S

25

Vector Growth: a naive approach

f vector grows by 1 each time, every push costs n “steps”

Cost of pushes:
1+2+3+4+5+...+n
=n (n+1)/2

20

Vector Growth: a naive approach

f vector grows by 1 each time, every push costs n “steps”

Cost of n pushes:
1+2+3+4+5+...+n

=n(n+1)/2

=n2/2 +n/2 O(n?

27

Vector Growth: a better approach

std: :vector<T> some vector;

Vector (simplified) :
‘ 1

2 3
0 L 2 3 4 5 6

28

Vector Growth: a better approach

It vector grows by 2 each time,

leta ” " be one where the whole vector needs
to be copied

When vector is not copied we have an “easy push”

Now half our pushes will be easy (1 step) and will be

So if reconsider the work over several pushes?

29

Analysis visualization adapted from Keith Schwarz

30

Vector Growth: a better a ach

Hard push Hard ush hl;\ard ush Hard push
Easy push Easy push Easy pus Easy push

Vector Growth: a better ach

Easy pushiard push

Hard push
Easy push h

Vector Growth: a better a ach

Let’s look at it a different
way: what happens if |
spread the work over time?

H

ard push Hard push rd push Hard push
Easy push . Easy push . Easy pustg&a . Easy push .

Vector Growth: a better a

Let’s look at it a different

way: what happens if |
spread the work over time?

Hard ush Hard push hls'!@rd ush Hard push
Easy push Easy push Easy pus Easy push

Vector Growth: a better approach

Let’s look at it a different
way: what happens if |
spread the work over time?

Hard push Hard push rd push Hard push
Easy push . Easy push . Easy pust&a . Easy push .

ach

Vector Growth: a better a

Hard ush Hard ush l&ard ush Hard push
Easy push Easy push Easy pus Easy push

Vector Growth: a better ag » bach

over several pushes | |

|
1|

Hard push Hard ush hl;;ard ush Hard push
Easy push Easy push Easy pus Easy push

$

Can we do better?

Vector Growth: a much better approach

std: :vector<T> some vector;

Vector (simplified) :
‘ 1

2 3
0 L 2 3 4 5 6 7 8 9

39

h better app

40

muc
_
_
_
i
L

©]
IS]
4
<
=]
O
D]
)
0]
> i

Vector Growth: a[ljuch better apprﬂ\

Let’s spread the work over time

41

Vector Growth: a[ljuch better apprﬂ\

Let’s spread the work over time

42

Vector Growth: a[ljuch better apprﬂ\

Let’s spread the work over time

43

Vector Growth: a[ljuch better apprﬂ\

Let’s spread the work over time

44

Vector Growth: a@luch better apprﬂ\

Let’s spread the work over time

45

A

4

Vector Growth: a much better app

()
E
e

| -

()

>

o
-

-

@)

S

()
e
e
©

qv]

()

| -

Q

n
2
e

O
-l

Vector Growth: a much better apprﬁw

Let’s spread the work over time

Amortized
Analysis

OVER SEVERAL PUSHES

N
\l

v

Vector Growth summarized

It it grows by 1, O(n2) over time (n pushes -

AMORTIZED ANALYSIS)

ANALYSIS)

It it doubles its size, push ta
pushes - AMORTIZED ANA

48

f it grows by 2, push takes roughly halt the”steps”
out still O(n2) over time (n pushes - AMORTIZED

<es O(1) over time (n

YSIS)

A steadily shrinking Stack

Let's consider this application:

- Push the 524,288th (219)element onto Stack which
causes it to double it's size to 1,048,576 (220)
- Reading an input file
- pop the elements that match
- manipulate input record accordingly
- repeat

49

A steadily shrinking Stack

Let's consider this application:

- Push the 524,288th (219)element onto Stack which
causes it to double it's size to 1,048,576 (220)

- Reading an input file
- pop the elements that match -
- manipulate input record accordingly
- repeat

50

A steadily shrinking Stack

Assume a few
matches at each
iteration -> mostly

empty stack but it
will be around for a
long time!

- Push the 524,288t (219)element oo Stack which
causes it to double it's size tof1,048,576 (220)
- Reading an input file

Let's consider this application:

- pop the elements that match
- manipulate input record accordingly

o1

Linked Chain

Linked Chain

push

/ >
top_ new_node_ptr

53

Linked Chain

push

> <
top_ new_node_ptr

54

Linked Chain

push

/

new_node_ptr

>
top_

55

Linked Chain

Linked Chain

push

>

top_

<
new_node_ptr

57

Linked Chain

push

new_node_ptr

top_

58

Linked Chain

push

top_ new_node_ptr

Linked Chain

push

/

top_ new_node_ptr

Linked Chain

Linked Chain

Linked Chain

> <
pop
top_ temp_ptr

63

Linked Chain

pop °
temp_ptr

top_

64

Linked Chain

<
temp_ptr

>
top_
65

POp

POp

Linked Chain

Linked Chain

>
top_

Linked-Chain Analysis

1 assignment + 1 increment/decrement = O(1)

size : O(1)
isEmpty: O(1)
push: O(1)
pop : O(1)
top : O(1)

GREAT!!II And there is no “"Except” case here, every
operation is O(1)!

68

To summarize

Array: O(1) for push and pop, but

Vector: size is
-Some pus

unbounded but
n operations take O(

O(n) -> O(

), others take

) over time (AMORT

ZED ANALYSIS)

Linked-Chain: O(1) for push and pop and size is

unbounded

69

#ifndef STACK_lep‘ement StaCk ADT

#define STACK H

template<<typename ItemType>

class Stack What should we add
{ here to implement it as
, a linked chain?
public:
Stack();

void push(const ItemType& new_entry); //adds an element to top of stack
void pop(); // removes element from top of stack

ItemType top() const; // returns a copy of element at top of stack

int size() const; // returns the number of elements in the stack

bool isEmpty() const;//returns true if no elements on stack, else false

private:
//implementation details here

}; //end Stack

#include "Stack.cpp"
#endif // STACK H ~

70

#ifndef STACK H |mp‘emeﬂt Sta Ck ADT

#define STACK H

template<class T>
class Stack

{

public:

—Stack()
~Stack(); // destructor

Stack(const Stack<T>& a stack); //copy constructor
void push(const T& newEntry); // adds an element to top of stack

void pop(); // removes element from top of stack

T top() const; // returns a copy of element at top of stack

int size() const; // returns the number of elements in the stack

bool isEmpty() const; //returns true if no elements on stack else fals

private:
Node<T>* top ; // Pointer to top of stack
int item count; // number of items currently on |[the stack

}s //end Stack

#include "Stack.cpp"

#endif // STACK H .

