Queue ADT

Tiziana Ligorio

Today'’s Plan

Announcements

Queue ADT

Applications

Queue

A data structure representing a waiting line
Objects can be enqueued to the back of the line

or dequeued from the front of the line

Queue

A data structure representing a waiting line
Objects can be enqueued to the back of the line

or dequeued from the front of the line

Queue

A data structure representing a waiting line
Objects can be enqueued to the back of the line

or dequeued from the front of the line

Queue

A data structure representing a waiting line
Objects can be enqueued to the back of the line

or dequeued from the front of the line

Queue

A data structure representing a waiting line
Objects can be enqueued to the back of the line

or dequeued from the front of the line

Queue

A data structure representing a waiting line
Objects can be enqueued to the back of the line

or dequeued from the front of the line

Queue

A data structure representing a waiting line
Objects can be enqueued to the back of the line

or dequeued from the front of the line

Queue

A data structure representing a waiting line
Objects can be enqueued to the back of the line

or dequeued from the front of the line

10

Queue

A data structure representing a waiting line
Objects can be enqueued to the back of the line

or dequeued from the front of the line

n

11

Queue

A data structure representing a waiting line
Objects can be enqueued to the back of the line

or dequeued from the front of the line

12

Queue

A data structure representing a waiting line
Objects can be enqueued to the back of the line
or dequeued from the front of the line

FIFO: First In First Out

Only front of queue is accessible (front), no other
objects in the queue are visible

13

Queue Applications

Generating all substrings
Recognizing Palindromes
Any waiting queue

- Print jobs

- OS scheduling processes with equal priority
- Messages between asynchronous processes

14

Queue Applications

Generating all substrings

Any walting queue
- Print jobs
- OS scheduling processes with equal priority
- Messages between asynchronous processes

15

Generating all substrings

Generate all possible strings up to some fixed length n
with repetition (same character included multiple
times)

We saw how to do something similar recursively
(generate permutations of fixed size n no repetition)

How might we do it with a queue?

Example simplitied to n = 2 and only letters A and B

16

Generate all substrings of
size 2 from alphabet {'A’, ‘B'}

\

17

Generate all substrings of
size 2 from alphabet {'A’, ‘B'}

\

|

18

Generate all substrings of
size 2 from alphabet {'A’, ‘B'}

19

(™% Generate all substrings of
size 2 from alphabet {'A’, ‘B'}

-ﬂ

20

(™% Generate all substrings of
size 2 from alphabet {'A’, ‘B'}

Ve

\

“AB” “BB”

21

mn mnmpan
{"", "A"}

Generate all substrings of
size 2 from alphabet {'A’, ‘B'}

22

mn mnmpan
{"", "A"}

Generate all substrings of

size 2 from alphabet {'A’, ‘B'}

Ve

\

“AB” “BB”

23

{"", "A"} Generate all substrings of

size 2 from alphabet {'A’, ‘B'}

24

mn npan u 1/
{"","A","B"}

Generate all substrings of

size 2 from alphabet {'A’, ‘B'}

e

\

“AB”

ﬂ

“BB”

25

mn npan u 1/
{"","A","B"}

Generate all substrings of

size 2 from alphabet {'A’, ‘B'}

e

\

“AB” “BB”

20

mn npan u 1/
{"","A","B"}

Generate all substrings of

size 2 from alphabet {'A’, ‘B'}

e

“BB”

27

mn npan u n u 1/
{"","A","B", "AA"}

Generate all substrings of

size 2 from alphabet {'A’, ‘B'}

e

\

“AB” “BB”

28

mn npan u n u 1/
{"","A","B", "AA"}

Generate all substrings of

size 2 from alphabet {'A’, ‘B'}

e

\

“AB” “BB”

29

mn npan u n u n u n
{", "A", "B", "AA", "AB"}

Generate all substrings of

size 2 from alphabet {'A’, ‘B'}

e

\

“AB!! “BB”

30

mn npan u n u n u n u n
{", "A", "B", "AA", "AB", "BA"}

Generate all substrings of

size 2 from alphabet {'A’, ‘B'}

e

\

“AB!! “BB”

31

mn npan u n u n u n u n u 1/
{", "A", "B", "AA", "AB", "BA", "BB" }

Generate all substrings of

size 2 from alphabet {'A’, ‘B'}

e

\

“AB” “BB!!

32

mn npan u n u n u n u n u 1/
{", "A", "B", "AA", "AB", "BA", "BB" }

Generate all substrings of

size 2 from alphabet {'A’, ‘B'}

e

\

“AB” “BB!!

33

Breadth-First Search

Applications
Find shortest path in graph
GPS navigation systems
Crawlers in search engines

Generally good when looking for the “shortest” or
"best” way to do something => lists things in

increasing order of “size” stopping at the “shortest”
solution

34

findAl11lSubstrings(int n)
{

put empty string on the queue

while(queue is not empty){
let current_string = dequeue and add to result
if(size of current_string < n){
for(each character ch)//every character in alphabet
append ch to current_string and enqueue it

}
}

return result;

35

Analysis

Finding all substrings (with repetition) of size up to n
Assume alphabet (A, B, ... , Z) of size 26
The empty string= 1= 260 B

All strings of size 1 = 26 _

All strings of size 2 = 262

With repetition: | have 26
options for each of the

All strings of size n = 26n n characters

36

{

Lecture Activity

Analyze the worst-case time
complexity of this algorithm
assuming alphabet of size 26

and up to strings of length n
findAllSubstrings(int n) n) =2

O(?)

put empty string on the queue

while(queue is not empty){
let current_string = dequeue and add to result
if(size of current_string < n){
for(each character ch)//every character in alphabet
append ch to current_string and enqueue it

}
}

return result;

37

Will stop when all strings have

been removed from queue

findA11Subsfrings(int n)

{
put émpty string on the queue

while(queue is not empty){
let current_string = dequeue and add to result
if(size of current_string < n){
for(each character ch)//every character in alphabet
append ch to current_string and enqueue it

}
}

return result;

38

Will stop when all strings have

been removed from queue

Removes 1 string from the queue

findA11Subsfrings(int n)
{

Adds 26 strings to the queue
put émpty string on the queue

while(queue is not empty){
let current_string = dequeu¢fand add to result
if(size of current_string =
for(each character ch)//every character in alphabet

append ch to current_string and enqueue it

}
}

return result;

39

Will stop when all strings have

been removed from queue

Removes 1 string from the queue

findAllSubsftrings(int n) Adds 26 strings to the queue

{
put émpty string on the queue
while(queue is not empty){
let current_string = dequeuefand add to result
if(size of current_string ¢ n){
for(each character ch)//every character in alphabet
append ch to current_string and enqueue it
5
}
return result;
}

Loop until queue is empty and dequeue only 1 each time.
So the question becomes:

How many strings are enqueued in total?
40

Will stop when all strings have

been removed from queue

Removes 1 string from the queue

findA11Subsfrings(int n)

Adds 26 strings to the queue

{
put émpty string on the queue
while(queue is not empty){
let current_string = dequeuefand add to result
if(size of current_string <« n){
for(each character ch)//every character in alphabet
append ch to current_string and enqueue it
5
}
return result;
}

T(n) =260 + 261 + 262 + ... 26"

41

Will stop when all strings have

been removed from queue

Removes 1 string from the queue

findAllSubsftrings(int n) Adds 26 strings to the queue

{
put émpty string on the queue
while(queue is not empty){
let current_string = dequeue @nd add to result
if(size of current_string < n){
for(each character ch)//every character in alphabet
append ch to current_string and enqueue it
5
}
return result;
}

T(n) =26° + 261 + 262 + . ..

42

Will stop when all strings have

been removed from queue

Removes 1 string from the queue

findAllSubsftrings(int n) Adds 26 strings to the queue

{
put émpty string on the queue
while(queue is not empty){
let current_string = dequeue¢fand add to result
if(size of current_string < n){
for(each character ch)//every character in alphabet
append ch to current_string and enqueue it
5
}
return result;
}

O(26")

43

Let n = 3, alphabet still {{A’,’B"}

e

5

3

44

Let n = 3, alphabet still {{A’,’B"}

/

“AB” “BB”

“ B” “ABA” “B ” “BBA”

2"

Let n = 3, alphabet still {{A’,’B"}

///

“AB” “BB”

“ B” “ABA” “B ” “BBA”
ﬂﬂﬂﬂ 2

Let n = 3, alphabet still {{A’,’B"}

/

“AB”

“ B!! “ABA” “B ” “BBA”

“BB”

Let n = 3, alphabet still {{A’,’B"}

/

“AB”

“ B!! “ABA” “B ”

“BB”

“BBA”

| “ABB“

Let n = 3, alphabet still {{A’,’B"}

/

“AB”

49

Let n = 3, alphabet still {{A’,’B"}

/

“AB”

50

Let n = 3, alphabet still {{A’,’B"}

<

“A”

nﬁ

B!! “ABA”

o1

Let n = 3, alphabet still {{A’,’B"}

///

“AB” “BB”

“ B” “ABA” “B J) “BBA”
MHMHmmHﬁm
52

Memory Usage

With alphabet {'A’, 'B’, ..., "Z’}, at some point we enad
up with strings in memory

Size of string on my machine = 24 bytes

Running this algorithm forn = 7 (= 193GB) is the

maximum that can be handled by a standard personal
computer

Sp
Forn=8 = 5TB requ.:Ce

53

What if we use a stack?

findAl1lSubstrings(int n)

{
push empty string on the stack
while(stack is not empty){
let current_string = pop and add to result
if(size of current_string < n){
for(each character ch)//every character in alphabet
append ch to current_string and push 1t
5
s
return result;
s

O(26n)

54

mmn u Bll}
)

60

'/y/ N/ BII}
')

E\

61

{ mn IIBII IIBBII}
) |

62

mmnmapmnn nn n
{"","B","BB","BA"}

63

mmn u nmn nn nmn n
{"","B","BB","BA","A"}

64

mmn u nmn nn nmn n
{"","B","BB","BA","A"}

e

\

“BB”

65

mmn u nmn nn nmn n
{"","B","BB","BA","A"}

66

{ mn IIBII IIBBII IIBAII IIAII IIABII}
| §

6/

mmn u nmn nn nmn nmn nn /)
{"","B","BB","BA","A"," AB"," AA"}

68

mmn u nmn nn nmn nmn nn /)
{"","B","BB","BA","A"," AB"," AA"}

What's the difference?

69

Depth-First Search

Applications

Detecting cycles in graphs

Path finding

~inding strongly connected components in graph

More space efticient than previous approach

70

Comparison

Breadth-First Search
(using a queue)

Time O(26n)
Space O(26"

Good for exploring options in
increasing order of size when
expecting to find “shallow” or
“short” solution

when must
keep each “level” in memory

[a

Depth-First Search
(using a stack)

Time O(26n)
Space O(n)

Explores each option
individually to max size -

More memory efficient

Other ADTs

Deque

Double ended queue (deque)

Can add and remove to/from front and back

<

73

Deque

Double ended queue (deque)

Can add and remove to/from front and back

74

Deque

Double ended queue (deque)

Can add and remove to/from front and back

75

Deque

Double ended queue (deque)

Can add and remove to/from front and back

/6

Deque

Double ended queue (deque)

Can add and remove to/from front and back

n
>

’r’

Deque

Double ended queue (deque)

Can add and remove to/from front and back

>

/8

Deque

Double ended queue (deque)

Can add and remove to/from front and back

4

79

Deque

Double ended queue (deque)

Can add and remove to/from front and back

80

Deque

Double ended queue (deque)

Can add and remove to/from front and back

81

Deque

In STL :
- does not use contiguous memory
- more complex to implement (keep track of memory

blocks)

- grows more efticiently than vector

82

Deque

In STL :
- does not use contiguous memory
- more complex to implement (keep track of memory

blocks)

- grows more efticiently than vector

In STL stack and queue are adapters of deck

83

Deque

In STL :

- does not use contiguous memory
- more complex to implement (keep track of memory

blocks)

- grows more efficiently than vector
In STL stack and queue are adapters ot deque

STL standardized the use of “push” and “pop”, adapting
with “push_back”, “push_front” etc. for all containers

84

Priority Queue

I 1" 7 . . High Priori
A queue of items “sorted” by priority 9 I"0'"“’.

_ :

85

Priority Queue

Low Priority .

I 1" 7 . . High Priori
A queue of items “sorted” by priority 'gh Priority

86

Priority Queue

Low Priority .

I 1" 7 . . High Priori
A queue of items “sorted” by priority 'gh Priority

87

Priority Queue

Low Priority .

I 1" 7 . . High Priori
A queue of items “sorted” by priority 'gh Priority

na

88

Priority Queue

Low Priority .

I 1" 7 . . High Priori
A queue of items “sorted” by priority 'gh Priority

na

89

Priority Queue

Low Priority .

I 1" 7 . . High Priori
A queue of items “sorted” by priority 'gh Priority

- |

90

Priority Queue

Low Priority .

I 1" 7 . . High Priori
A queue of items “sorted” by priority 'gh Priority

nA

91

Priority Queue

Low Priority .

1 11 11 . . Hiah Priorit
A gqueue of items “sorted” by priority igh Priority

If value indicates priority, it
amounts to a sorted list that
accesses/removes
the "highest” items first

92

Priority Queue

Orders elements by priority => removing an element
will return the element with highest priority value

Elements with same priority kept in queue order (in
some implementations)

93

Priority Queue

Spoiler Alert!!!!
Often implemented with a Heap

Will tell you what it is in soon... but it is another
example of ADT vs data structure

94

