
Queue ADT

Tiziana Ligorio
!1

Today’s Plan

Announcements

Queue ADT

Applications

!2

Queue

A data structure representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

 

!3

34

Queue

A data structure representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

 

!4

34

Queue

A data structure representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

 

!5

34 127

Queue

A data structure representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

 

!6

34 127

Queue

A data structure representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

 

!7

34 127 13

Queue

A data structure representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

 

!8

34 127 13

Queue

A data structure representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

 

!9

34 127 13

Queue

A data structure representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

 

!10

127 13

Queue

A data structure representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

 

!11

49127 13

Queue

A data structure representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

 

!12

49127 13

Queue

A data structure representing a waiting line

Objects can be enqueued to the back of the line

 or dequeued from the front of the line

FIFO: First In First Out

Only front of queue is accessible (front), no other
objects in the queue are visible

!13

Queue Applications

Generating all substrings

Recognizing Palindromes

Any waiting queue  
 - Print jobs 
 - OS scheduling processes with equal priority 
 - Messages between asynchronous processes 
 . . .

!14

Queue Applications

Generating all substrings

Any waiting queue  
 - Print jobs 
 - OS scheduling processes with equal priority 
 - Messages between asynchronous processes 
 . . .

!15

Generating all substrings

Generate all possible strings up to some fixed length n
with repetition (same character included multiple
times)

We saw how to do something similar recursively
(generate permutations of fixed size n no repetition)

How might we do it with a queue?

Example simplified to n = 2 and only letters A and B

!16

!17

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

!18

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

!19

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

!20

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “ “A“ “B“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”}

!21

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“ “B“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”}

!22

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“B“

“AA“ “AB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”}

!23

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“B“ “AA“ “AB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”}

!24

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“B“

“AA“ “AB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”}

!25

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“B“

“AA“ “AB“

“BA“ “BB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”}

!26

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“ “AB“ “BA“ “BB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”}

!27

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“

“AB“ “BA“ “BB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”}

!28

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“

“AB“ “BA“ “BB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”}

!29

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AB“

“BA“ “BB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”}

!30

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AB“

“BA“ “BB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”, “AB”}

!31

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“BA“

“BB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”, “AB”, “BA”}

!32

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“BB“

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”, “AB”, “BA”, “BB” }

!33

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

Generate all substrings of
size 2 from alphabet {‘A’, ‘B’}

{ “”, “A”, “B”, “AA”, “AB”, “BA”, “BB” }

Breadth-First Search

Applications  
 Find shortest path in graph 
 GPS navigation systems 
 Crawlers in search engines 
 . . .

Generally good when looking for the “shortest” or
“best” way to do something => lists things in
increasing order of “size” stopping at the “shortest”
solution

!34

!35

findAllSubstrings(int n)
{
 put empty string on the queue

 while(queue is not empty){
 let current_string = dequeue and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and enqueue it
 }
 }
 return result;
}

Size of Substring

Finding all substrings (with repetition) of size up to n

Assume alphabet (A, B, … , Z) of size 26

The empty string= 1= 260

All strings of size 1 = 261

All strings of size 2 = 262

. . .

All strings of size n = 26n

Analysis

!36

With repetition: I have 26
options for each of the

 n characters

A B C . . . Z

AA BA CA . . . ZA

AB BC
. . .

AZ

. . .

. . .

ZB

ZZ

CB

BZ CZ

””

Lecture Activity

findAllSubstrings(int n)
{
 put empty string on the queue

 while(queue is not empty){
 let current_string = dequeue and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and enqueue it
 }
 }
 return result;
}

!37

Analyze the worst-case time
complexity of this algorithm
assuming alphabet of size 26
and up to strings of length n

 T(n) = ?
O(?)

Size of Substring

findAllSubstrings(int n)
{
 put empty string on the queue

 while(queue is not empty){
 let current_string = dequeue and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and enqueue it
 }
 }
 return result;
}

!38

Will stop when all strings have
been removed from queue

findAllSubstrings(int n)
{
 put empty string on the queue

 while(queue is not empty){
 let current_string = dequeue and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and enqueue it
 }
 }
 return result;
}

!39

Adds 26 strings to the queue

Removes 1 string from the queue

Will stop when all strings have
been removed from queue

findAllSubstrings(int n)
{
 put empty string on the queue

 while(queue is not empty){
 let current_string = dequeue and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and enqueue it
 }
 }
 return result;
}

!40

Adds 26 strings to the queue

Removes 1 string from the queue

Will stop when all strings have
been removed from queue

Loop until queue is empty and dequeue only 1 each time.
So the question becomes:
How many strings are enqueued in total?

findAllSubstrings(int n)
{
 put empty string on the queue

 while(queue is not empty){
 let current_string = dequeue and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and enqueue it
 }
 }
 return result;
}

!41

Adds 26 strings to the queue

Removes 1 string from the queue

Will stop when all strings have
been removed from queue

T(n) = 260 + 261 + 262 + . . . 26n

findAllSubstrings(int n)
{
 put empty string on the queue

 while(queue is not empty){
 let current_string = dequeue and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and enqueue it
 }
 }
 return result;
}

!42

Adds 26 strings to the queue

Removes 1 string from the queue

Will stop when all strings have
been removed from queue

T(n) = 260 + 261 + 262 + . . . 26n

findAllSubstrings(int n)
{
 put empty string on the queue

 while(queue is not empty){
 let current_string = dequeue and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and enqueue it
 }
 }
 return result;
}

!43

Adds 26 strings to the queue

Removes 1 string from the queue

Will stop when all strings have
been removed from queue

O(26n)

!44

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

Let n = 3, alphabet still {‘A’,’B’}

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“ “ 20

!45

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“A“ “B“

Let n = 3, alphabet still {‘A’,’B’}

21

!46

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“AA“ “AB“ “BA“ “BB“

Let n = 3, alphabet still {‘A’,’B’}

22

!47

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“AB“ “BA“ “BB“

Let n = 3, alphabet still {‘A’,’B’}

“AAA“ “AAB““AA“

!48

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“BA“ “BB“

Let n = 3, alphabet still {‘A’,’B’}

“AAA“ “AAB“ “ABA“ “ABB““AB“

!49

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“BA“ “BB“

Let n = 3, alphabet still {‘A’,’B’}

“AAA“ “AAB“ “ABA“ “ABB“ “BAA“ “BAB“

!50

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“BB“

Let n = 3, alphabet still {‘A’,’B’}

“AAA“ “AAB“ “ABA“ “ABB“ “BAA“ “BAB“

!51

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“AAA“ “AAB“ “ABA“ “ABB“ “BAA“ “BAB“ “BBA“ “BBB“

Let n = 3, alphabet still {‘A’,’B’}

“BB“

!52

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AAA” “AAB” “ABA” “ABB” “BAA” “BAB” “BBA” “BBB

“AAA“ “AAB“ “ABA“ “ABB“ “BAA“ “BAB“ “BBA“ “BBB“

Let n = 3, alphabet still {‘A’,’B’}

23

Memory Usage

With alphabet {’A’, ’B’, …, ’Z’}, at some point we end
up with 26n strings in memory

Size of string on my machine = 24 bytes

Running this algorithm for n = 7 (≈ 193GB) is the
maximum that can be handled by a standard personal
computer

For n = 8 ≈ 5TB

!53

Massive space requirement

What if we use a stack?

!54

O(26n)

findAllSubstrings(int n)
{
 push empty string on the stack

 while(stack is not empty){
 let current_string = pop and add to result
 if(size of current_string < n){
 for(each character ch)//every character in alphabet
 append ch to current_string and push it
 }
 }
 return result;
}

!55

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “

!56

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “
{ “” }

!57

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“ “ “A“ “B“
{ “” }

!58

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“B“

{ “” }

!59

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“B“
{ “” }

!60

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“B“ “BA“ “BB“
{ “”,“B”}

!61

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“BA“

“BB“

{ “”,“B”}

!62

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“BA“

“BB“
{ “”,“B”,”BB”}

!63

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“

“BA“
{ “”,“B”,”BB”,”BA”}

!64

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“
{ “”,“B”,”BB”,”BA”,”A”}

!65

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“A“ “AA“ “AB“
{ “”,“B”,”BB”,”BA”,”A”}

!66

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“

“AB“

{ “”,“B”,”BB”,”BA”,”A”}

!67

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“

“AB“
{ “”,“B”,”BB”,”BA”,”A”,”AB”}

!68

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

“AA“
{ “”,“B”,”BB”,”BA”,”A”,”AB”,”AA”}

!69

“ ”

“A” “B”

“AA” “AB” “BA” “BB”

What’s the difference?

{ “”,“B”,”BB”,”BA”,”A”,”AB”,”AA”}

Depth-First Search

Applications  
 Detecting cycles in graphs 
 Path finding 
 Finding strongly connected components in graph 
 . . .

Same worst-case runtime analysis  
More space efficient than previous approach  
Does not explore options in increasing order of size

!70

Comparison
Breadth-First Search  
(using a queue)

Time O(26n)

Space O(26n)

Good for exploring options in
increasing order of size when
expecting to find “shallow” or
“short” solution

Memory inefficient when must
keep each “level” in memory

!71

Depth-First Search  
(using a stack)

Time O(26n)

Space O(n)

Explores each option
individually to max size - does
NOT list options by increasing
size

More memory efficient

Other ADTs

!72

Deque

Double ended queue (deque)

Can add and remove to/from front and back

!73

34

Deque

Double ended queue (deque)

Can add and remove to/from front and back

!74

34

Deque

Double ended queue (deque)

Can add and remove to/from front and back

!75

34
127

Deque

Double ended queue (deque)

Can add and remove to/from front and back

!76

34 127

Deque

Double ended queue (deque)

Can add and remove to/from front and back

!77

34 127
49

Deque

Double ended queue (deque)

Can add and remove to/from front and back

!78

34 12749

Deque

Double ended queue (deque)

Can add and remove to/from front and back

!79

34 127
49

Deque

Double ended queue (deque)

Can add and remove to/from front and back

!80

34 127

Deque

Double ended queue (deque)

Can add and remove to/from front and back

!81

34 127

Deque

In STL : 
- does not use contiguous memory  
- more complex to implement (keep track of memory
blocks) 
- grows more efficiently than vector

 
 

!82

Deque

In STL : 
- does not use contiguous memory  
- more complex to implement (keep track of memory
blocks) 
- grows more efficiently than vector

In STL stack and queue are adapters of deck  
 

!83

Deque

In STL : 
- does not use contiguous memory  
- more complex to implement (keep track of memory
blocks) 
- grows more efficiently than vector

In STL stack and queue are adapters of deque

STL standardized the use of “push” and “pop”, adapting
with “push_back”, “push_front” etc. for all containers  

!84

Priority Queue

A queue of items “sorted” by priority

!85

A

Low Priority

High Priority

Priority Queue

A queue of items “sorted” by priority

!86

A

Low Priority

High Priority

Priority Queue

A queue of items “sorted” by priority

!87

A

Low Priority

High Priority

D

Priority Queue

A queue of items “sorted” by priority

!88

A

Low Priority

High Priority

D

Priority Queue

A queue of items “sorted” by priority

!89

A

Low Priority

High Priority

D

X

Priority Queue

A queue of items “sorted” by priority

!90

X

Low Priority

High Priority

A D

Priority Queue

A queue of items “sorted” by priority

!91

X

Low Priority

High Priority

A D

Priority Queue

A queue of items “sorted” by priority

!92

Low Priority

High Priority

A D

If value indicates priority, it
amounts to a sorted list that

accesses/removes  
the “highest” items first

Priority Queue

Orders elements by priority => removing an element
will return the element with highest priority value

Elements with same priority kept in queue order (in
some implementations)

!93

Priority Queue

Spoiler Alert!!!!

Often implemented with a Heap

Will tell you what it is in soon… but it is another
example of ADT vs data structure

!94

