
Data Abstraction & Problem Solving with C++:
Walls and Mirrors
Seventh Edition

Chapter 18

Dictionaries and Their
Implementations

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

The A D T Dictionary (1 of 3)
Figure 18-1 A collection of data about certain cities

City Country Population
Buenos Aires Argentina 13,639,000
Cairo Egypt 17,816,000
Johannesburg South Africa 7,618,000
London England 8,586,000
Madrid Spain 5,427,000
Mexico City Mexico 19,463,000
Mumbai India 16,910,000
New York City U.S.A. 20,464,000
Paris France 10,755,000
Sydney Australia 3,785,000
Tokyo Japan 37,126,000
Toronto Canada 6,139,000

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

The A D T Dictionary (2 of 3)

• Consider need to search such a collection for
– Name
– Address

• Criterion chosen for search is search key

• The A D T dictionary uses a search key to identify its
entries

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

The A D T Dictionary (3 of 3)

Figure 18-2 U M L diagram for a class of dictionaries

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Possible Implementations (1 of 9)

• Categories of linear implementations
– Sorted by search key array-based
– Sorted by search key link-based
– Unsorted array-based
– Unsorted link-based

Figure 18-3 A dictionary entry

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Listing 18-2 A header file for a class of dictionary entries
Possible Implementations (2 of 9)

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Possible Implementations (3 of 9)
Listing 18-2 [Continued]

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Possible Implementations (4 of 9)

Listing 18-2 [Continued]

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Possible Implementations (5 of 9)
Listing 18-2 [Continued]

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Possible Implementations (6 of 9)
Figure 18-4 Data members for two sorted linear implementations of the
A D T dictionary for the data in Figure 18-1 (see slide 2)

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Possible Implementations (7 of 9)
Listing 18-2 [Continued]

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Possible Implementations (8 of 9)
Listing 18-2 [Continued]

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Possible Implementations (9 of 9)
Figure 18-5 The data members for a binary search tree implementation of the
A D T dictionary for the data in Figure 18-1 (see slide 2)

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Sorted Array-Based Implementation of A D T
Dictionary Listing 18-3 A header file for the class ArrayDictionary

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Binary Search Tree Implementation of the A D

T Dictionary (1 of 3)
Listing 18-4 A header file for the class TreeDictionary

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Binary Search Tree Implementation of the A D

T Dictionary (2 of 3) Listing 18-4 [Continued]

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Binary Search Tree Implementation of the A D

T Dictionary (3 of 3) Method add which prevents duplicate keys.

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Selecting an Implementation

• Linear implementations
– Perspective
– Efficiency
– Motivation

• Consider
– What operations are needed
– How often each operation is required

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Three Scenarios (1 of 5)

A. Addition and traversal in no particular order
– Unsorted order is efficient
– Array-based versus pointer-based

B. Retrieval
– Sorted array-based can use binary search
– Binary search impractical for link-based
– Max size of dictionary affects choice

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Three Scenarios (2 of 5)

C. Addition, removal, retrieval, traversal in sorted order
– Add and remove need to find position, then add or

remove from that position
– Array-based best for find, link-based best for addition/

removal

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Three Scenarios (3 of 5)

Figure 18-6 Addition for unsorted linear implementations

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Three Scenarios (4 of 5)

Figure 18-7 Addition for sorted linear implementations

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Three Scenarios (5 of 5)

Figure 18-8 The average-case order of the A D T dictionary operations
for various implementations

Blank Addition Removal Retrieval Traversal
Unsorted array-based O(1) O(n) O(n) O(n)
Unsorted link-based O(1) O(n) O(n) O(n)
Sorted array-based O(n) O(n) O(log n) O(n)
Sorted link-based O(n) O(n) O(n) O(n)
Binary search tree O(log n) O(log n) O(log n) O(n)

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Hashing as a Dictionary Implementation (1 of 3)

• Situations occur for which search-tree implementations
are not adequate.

• Consider a method which acts as an “address calculator”
which determines an array index

– Used for add, getValue, remove operations

• Called a hash function
– Tells where to place item in a hash table

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Hashing as a Dictionary Implementation (2 of 3)

Figure 18-9 Address calculator

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Hashing as a Dictionary Implementation (3 of 3)

• Perfect hash function
– Maps each search key into a unique location of the

hash table
– Possible if you know all the search keys

• Collision occurs when hash function maps more than one
entry into same array location

• Hash function should
– Be easy, fast to compute
– Place entries evenly throughout hash table

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Hash Functions

• Sufficient for hash functions to operate on integers –
examples:

– Select digits from an I D number
– Folding – add digits, sum is the table location
– Modulo arithmetic ()=h x x mod tableSize
– Convert character string to an integer – use A S C I I

values

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Resolving Collisions with Open Addressing
(1 of 7)

Figure 18-10 A collision

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Resolving Collisions with Open Addressing
(2 of 7)

• Approach 1: Open addressing
– Linear probing
– Quadratic probing
– Double hashing
– Increase size of hash table

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Resolving Collisions with Open Addressing
(3 of 7)

()=h x x mod 101

Figure 18-11 Linear probing with

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Resolving Collisions with Open Addressing
(4 of 7) Figure 18-12 Quadratic probing with

()=h x x mod 101

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Resolving Collisions with Open Addressing
(5 of 7)

Figure 18-13 Double hashing during the addition of 58, 14, and 91

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Resolving Collisions with Open Addressing
(6 of 7)

• Approach 2: Resolving collisions by restructuring the
hash table

– Buckets
– Separate chaining

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Resolving Collisions with Open Addressing
(7 of 7)

Figure 18-14 Separate chaining

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

The Efficiency of Hashing (1 of 6)

• Load factor measures how full a hash table is

α =
Current number of table entries

tableSize

• Unsuccessful searches
– Generally require more time than successful

• Do not let the hash table get too ful

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

The Efficiency of Hashing (2 of 6)

• Linear probing – average number of comparisons

⎡ ⎤+⎢ ⎥α⎣ ⎦

⎡ ⎤
+⎢ ⎥α⎣ ⎦

2

1 1
1 for a successful search, and

2 1-

1 1
1 for an unsuccessful search

2 (1-)

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

The Efficiency of Hashing (3 of 6)

• Quadratic probing and double hashing – average number of
comparisons

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

The Efficiency of Hashing (4 of 6)

• Efficiency of the retrieval and removal operations under
the separate-chaining approach

α
+

α

1 for a successful search, and
2

for an unsuccessful search

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

The Efficiency of Hashing (5 of 6)
Figure 18-15 The relative efficiency of four collision-resolution methods

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Figure 18-15 [Continued]
The Efficiency of Hashing (6 of 6)

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

What Constitutes a Good Hash Function?

• Is hash function easy and fast to compute?

• Does hash function scatter data evenly throughout hash
table?

• How well does hash function scatter random data?

• How well does hash function scatter non-random data?

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Dictionary Traversal: An Inefficient
Operation Under Hashing

• Entries hashed into table[i] and table[i+1] have no
ordering relationship

• Hashing does not support well traversing a dictionary in
sorted order

– Generally better to use a search tree

• In external storage possible to see
– Hashing implementation of getValue
– And search-tree for ordered operations

simultaneously

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Using Hashing, Separate Chaining to
Implement A D T Dictionary (1 of 3)

Figure 18-16 A dictionary entry when separate chaining is used

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Using Hashing, Separate Chaining to
Implement A D T Dictionary (2 of 3)

Listing 18-5 The class HashedEntry

Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Using Hashing, Separate Chaining to
Implement A D T Dictionary (3 of 3)

Listing 18-5 [Continued]

