
Data Abstraction & Problem Solving with C++: 
Walls and Mirrors
Seventh Edition

C++ Interlude 4

Safe Memory Management 
Using Smart Pointers



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Raw Pointers (1 of 3)

• Allocate memory in free store by using new operator 
– Returns reference to newly created object in memory 

• Store reference to object in a pointer variable 
– Use pointer variable to access object 

• Copy reference to another pointer variable 
– Creates alias to same object



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Raw Pointers (2 of 3)

• Use delete operator to deallocate object’s memory 
– Must also set to null p t r any pointer variables that 

referenced the object 

• Need to keep track number of aliases that reference an 
object … else results in 

– Dangling pointers 
– Memory leaks 
– Other errors (program crash, wasted memory, …)



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Raw Pointers (3 of 3)

• Languages such as Java and Python disallow direct 
reference to objects 

– Use reference counting to track number of aliases 
that reference an object 

– Known as the “reference count” 

• Language can detect when object no longer has 
references 

– Can deallocate … known as “garbage collection”



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Smart Pointers (1 of 2)

• C++ now supports “smart” pointers (or managed pointers) 
– Act like raw pointers 
– Also provide automatic memory management 

features 

• When you declare a smart pointer 
– Placed on application stack 
– Smart pointer references an object object is

“managed”



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Smart Pointers (2 of 2)

• Smart-pointer templates 
– shared_p t r – provides shared ownership of object 
– unique_p t r – no other pointer can reference same 

object 
– weak_p t r – reference to an object already managed 

by a shared pointer … does not have ownership of 
the object



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Using Shared Pointers (1 of 2)

Figure C4-1 Shared pointers and the manager object referencing 
a managed object.



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Using Shared Pointers (2 of 2)

• A shared pointer … 
– Provides a safe mechanism to implement shared 

object ownership 
– Maintains a count of aliases to an object 
– Decreases or increases reference count of managed 

object each time instance is created or goes out of 
scope or is assigned null p t r 

– Calls destructor of managed object when reference 
count reaches 0



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Revised Node and LinkedList Classes (1 of 11)

• Use shared pointers in earlier Node and LinkedList classes 
– Help ensure memory handled correctly

Listing C4-1 The revised header file for the class Node, originally 
given in Listing 4-1



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Revised Node and LinkedList Classes (2 of 11)

Listing C4-1 [Continued]



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Revised Node and LinkedList Classes (3 of 11)
Listing C4-2 The revised implementation file for the class Node, 
originally given in Listing 4- 2



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Revised Node and LinkedList Classes (4 of 11)
Listing C4-2 [Continued]



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Revised Node and LinkedList Classes (5 of 11)

Listing C4-2 [Continued]



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Revised Node and LinkedList Classes (6 of 11)

Listing C4-3 The insert method for LinkedList



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Revised Node and LinkedList Classes (7 of 11)

Listing C4-3 [Continued]



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Revised Node and LinkedList Classes (8 of 11)

Listing C4-3 [Continued]



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Revised Node and LinkedList Classes (9 of 11)

Listing C4-4 The remove method for LinkedList



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Revised Node and LinkedList Classes (10 of 11)

Listing C4-4 [Continued]



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Revised Node and LinkedList Classes (11 of 11)

clear method for LinkedList



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Using Unique Pointers (1 of 3)
Different ways to create unique pointers.



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Using Unique Pointers (2 of 3)
Function that accepts ownership of an object and then returns it 
to the caller



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Using Unique Pointers (3 of 3)

• A unique pointer … 
– Has solitary ownership of its managed object 
– Behaves as if it maintains a reference count of either 

0 or 1 for its managed object 
– Can transfer its unique ownership of its managed 

object to another unique pointer using method move 
– Cannot be assigned to another unique pointer



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Using Weak Pointers (1 of 4)

• Weak pointer only observes managed object 
– But does not have ownership 
– Therefore, cannot affect its lifetime 

• After these statements execute, reference count for 
object managed by shared P t r1 is 3



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Using Weak Pointers (2 of 4)

Figure C4-2 Weak and shared ownership of a managed object



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Using Weak Pointers (3 of 4)

Listing C4-5 Partial header file for the class DoubleNode



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Using Weak Pointers (4 of 4)

• A weak pointer … 
– References but does not own an object referenced by 

shared pointer 
– Cannot affect lifetime of managed object 
– Does not affect reference count of managed object 
– Has method lock to provide a shared-pointer version 

of its reference 
– Has method expired to detect whether its reference 

object no longer exists



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Other Smart Pointer Features (1 of 2)

• Method common to all smart pointers 
– reset 

• Method common to all shared and unique pointers 
– get 

• Methods exclusive to shared pointers 
– unique 
– use_count



Copyright © 2017, 2013, 2007 Pearson Education, Inc. All Rights Reserved

Other Smart Pointer Features (2 of 2)

• Method exclusive to unique pointers 
– release 

• Unique pointers with arrays 
– Use a unique pointer to manage a dynamic array


