ER2 "~ GUIDED TOUR OF THE DEVELOPMENT PROCESS

analysis
Real world Abstract world
Problem | Problem statement Model
design
Solution Application Software design v
ﬁmplementa tion

Figure 2-1. The software process (based on Zelkowitz et al., 1979")

Using Figure 2-1 as a way of thinking about software processes, we will now look at how the various steps
relate to setting up a database project by applying those steps to Example 1-1, “The Plant Database.”

Initial Problem Statement

We start with some initial description of the problem. One way to represent a description is with use cases, which
are part of the Unified Modeling Language (UML),” a set of diagramming techniques used to depict various aspects
of the software process. Use cases are descriptions of how different types of users (more formally known as actors)
might interact with the system. Most texts on systems analysis include discussions about use cases. (Alistair
Cockburn’s book Writing Effective Use Cases® is a particularly readable and pragmatic account.) Use cases can be
at many different levels, from high-level corporate goals down to descriptions of small program modules. We will
concentrate on the tasks someone sitting in front of a desktop computer would be trying to carry out. For a database
project, these tasks are most likely to be entering or updating data, and extracting information based on that data.
The UML notation for use cases involves stick figures representing, in our case, types of users, and ovals
representing each of the tasks that the user needs to be able to carry out. For example, Figure 2-2 illustrates a use
case in which a user performs three as yet unknown tasks. However, those stick figures and ovals aren’t really
enough to describe a given interaction with a system. When writing a use case, along with a diagram you should
create a text document describing in more detail what the use case entails.

C D

() et Task1 — =

é_\ <>\Task2/

Taclk 2

Figure 2-2. UML notation for use cases’

CHAPTER 2 © GUIDED TOUR OF THE DEVELOPMENT PR

Let’s see how use cases can be applied to the problem from Example 1-1 in the last chapter. Figure 2-3 recaps
where we started with an initial database table recording plants and their uses.

plantiD ~ genus v species ~ common_name ~ usel =+~ wuse2 -~ use3 -

1 Dodonaea viscosa Akeake shelter hedging soil stability
2 Cedrus atlantica Atlas cedar shelter

3 Alnus glutinosa Black alder soil stability shelter firewood

4 Eucalyptus nichollii Black peppermint gum shelter coppicing bird food

5 Juglans nigra Black walnut timber

6 Acacia mearnsii Black wattle firewood shelter soil stability

Figure 2-3. Original data of plants and uses

If we consider what typical people might want to do with the data shown in Figure 2-3, the use cases
suggested in Example 2-1 would be a start.

EXAMPLE 2-1. INITIAL USE CASES FOR THE PLANT DATABASE

Figure 2-4 shows some initial use cases for the plant database. The text following the figure describes each
use case.

% ﬁaintain plant data
User \ 2. Report on plants

3. Report on uses

Figure 2-4. First attempt at use cases for the plant database

Use case 1: Enter (or edit) all the data we have about each plant; that is, plant ID, genus, species, common
name, and uses.

Use case 2: Find or report information about a plant (or every plant) and see what it is useful for.

Use case 3: Specify a use and find the appropriate plants (or report for all uses).

As explained in the previous chapter, if the data is stored as in Figure 2-3, we cannot conveniently satisfy
the requirements of all the use cases in Example 2-1. It is easy to get information about each plant (use case
2) by looking at each row in the table. However, finding all the plants that satisfy a particular use is extremely
awkward. Have a go at finding all the plants suitable for firewood. You have to look in each of the use columns
for every row.

Classes and Objects

Each class can be considered a template for storing data about a set of similar things (places, events, or people).
Let’s consider Example 2-1 about plants and their uses. An obvious candidate for our first class is the idea of

a Plant. Each plant can be described in a similar way in that each has a genus, a species, a common_name, and
perhaps a plantID number. These pieces of information, that we will keep about each plant, are referred to as the
attributes (or properties) of the class. Figure 2-5 shows the UML notation for a class and its attributes. The name
of the class appears in the top panel, and the middle panel contains the attributes. For some types of software
systems, there may be processes that a class would be responsible for carrying out. For example, an Order class
related to an online shopping cart might have a process for calculating a price including tax. These are known

as methods and appear in the bottom panel. For predominantly information-based problems, methods are not
usually a major consideration in the early stages of the design, and we will ignore them for now.

Plant

plantiD

genus

species
common_name

Figure 2-5. UML notation for a class

Each plant about which we want to keep data will conform to the template in Figure 2-5; that is, each will
have (or could have) its own value for the attributes plantID, genus, species, and common_name. Each individual
plant is referred to as an object of the Plant class. The Plant class and some objects are depicted in Figure 2-6.

Class Objects

A template which includes Each object of a class has its

the name of each attribute. own value for each attribute.

i
plantiD: 1
genus: Dodonaea
species: Viscosa
name: Akeake
Plant

plantID

genus »

P plantD: 2

common_name genus: Cedrus
species: Atlantica
name: Atlas Cedar
plantiD: 3
genus: Alnus
species: Glutinosa
name: Black Alder

Figure 2-6. A class and some of its objects

The Plant class could include other attributes, such as typical height, lifespan, and so on. What about
the uses to which a plant can be put? In the database table in Figure 2-3, these uses were included as several
attributes (usel, use2, and so on) of a plant. In Example 1-1, we saw how having uses stored as several attributes
caused a number of problems. What we have here is another candidate for a class: Use. In Chapter 5, we will
discuss in more detail how we can figure out whether we need classes or attributes to hold information. Our new
class, Use, will not have many attributes, possibly just name. Each object of the Use class will have a value for name
such as “hedging,” “shelter,” or “bird food.” What is particularly interesting for our example is the relationship
between the Use and Plant classes.

1
Dodonaea
Viscosa

Akeake

4///':

Shelter

A
2
Cedrus
Atlantica

Atlas Cedar

N
3
Alnus

Glutinosa
Black Alder

Soil
stability

Firewood

Hedging

Bee food

Figure 2-7. Some instances of the relationship between Plant and Use

In a database, we would usually create a table for each class, and the information about each object would be
recorded as a row in that table as shown in Figure 2-8. The information about the specific relationship instances
would also be recorded in a table. For a relational database, you would expect to find tables such as those in Figure
2-8 to represent the plants and relationship instances shown in Figure 2-7. We will look further at how and why we
design tables like these in Chapter 7. For now, just convince yourself that it contains the appropriate information.

plantiD » genus ~ species - common_name ~ Plant + Use v

1 Dodonaea viscosa Akeake 1 soil stability

2 Cedrus atlantica Atlas cedar 1 hedging

3 Alnus glutinosa Black alder 1 shelter

< Eucalyptus nichollii Black peppermint gum 2 shelter

5 Juglans nigra Black walnut 3 firewood

6 Acacia mearnsii Black wattle 3 soil stability
Table Plant 3 shelter

Table Plant Uses

Figure 2-8. Plant objects and instances of the relationship between Plants and Uses expressed in database tables

One particular object of ClassA is associated
with at least 1 and possibly many (n) objects of

1

\
\
\
1
! 5
>

Class B .

T

1

1

1

1

1

1

1

1

1

N 1
\4
N

- k7

Class B

Class A

~

A

One particular object of\E:IassB is
associated with possibly 0 and at most ¥

object of Class A

Figure 2-9. A data model expressed as a UML class diagram

Relationships are read in both directions. Figure 2-9 shows how many objects of the right-hand class can
be associated with one particular object of the left-hand class and vice versa. When we want to know how many

objects of ClassB are associated with ClassA, we look at the numbers nearest ClassB.

A great deal can be learned about data by investigating the cardinality of relationships, and we will look at
the issue of cardinality further in Chapter 4. The current chapter concentrates on the notation for class diagrams
and what the diagrams can tell you about the relationships between different classes. Figure 2-10 shows some
relationships that could be associated with small parts of some of the examples you saw in the Chapter 1.

Left to Right Right to Left
One particular One particular use
il e plant may have no | may have no plants
0.n e uses or it could associated with it, or
have any number it may have many
plants
Person — One person may Each interest has at
0 0.n have lots of least one person
interests or may associated with it
have none and maybe several
TR : One customer may Each transaction is
Customer Transaction . .
11 S n have several associated with
transactions but exactly one
might not have any | customer
A visit has at least Each sample comes
Visit Sample one sample from a single visit
14 1.n associated with it
and maybe many

re 2-11. First attempt at a data model for plants example

We now need to check whether this model is able to satisfy the requirements of the three use cases in

re 2-4:

Plant

plantiD

genus

species
common_name

Use

Use case 1: Maintain plant information. We can create objects for each plant and
record the attributes we might require now or in the future. We can create use objects,
and we can specify relationship instances between particular plant and use objects.

Use case 2: Report on plants. We can take a particular plant object (or each one in
turn) and find the values of its attributes. We can then find all the use objects related to

that plant object.

Use case 3: Report on uses. We can take a particular use object and find all the plant

objects that are related to it.

name

We now realize that we have a new class, Genus, to add to our data model. Why is it important to include this
new class? Well, if genus remains as simply an attribute of our original Plant class, we can enter pretty much any
value for each object. Two objects with genus Eucalyptus might end up with different spellings (almost certainly
if | were doing the data entry). This would cause problems every time we wanted to find or count or report on all
Eucalyptus plants. The fact that our user has mentioned that grouping by genus would be useful means that it is
important to get the genus data stored appropriately. Our revised data model in Figure 2-12 shows how genus can
be represented so that the data is kept accurately.

Species
Genus specieslD Use
genus_name species_name name
2.3 L.=n common_name 0.n 0..n

Figure 2-12. Revised data model for our plant problem

—~

S
-

/ 1. Maintain uses
o~ X D

/\ 2. Maintain genus
User \ ¥ il

e ol
3. Maintain species
&

e T
“.__ 7 4. Reporton plants

5. Report on uses

ure 2-13. Revised use cases for the plant problem

Use case 1: Maintain uses. Create or update a use object. Enter (or update) the name.
Use case 2: Maintain genus. Create or update a genus object. Enter the name.

Use case 3: Maintain species. Create a species object. Generate a unique ID, and enter the species and
common name. Associate the new species object with one of the existing genus objects and optionally
associate it with any number of the existing uses.

Use case 4: Report plant information. For each genus object, write out the name and find all the associated
species objects. For each species object, write out the species and common name. Find all the associated
uses and write out their names.

Use case 5: Report use information. For each use object, write out the name. Find all the associated species
objects, and write out for each the associated genus name and the species and common names.

In very broad terms, each class will be represented by a database table. Because each species can have many
uses and vice versa, we need an additional table for that relationship. This is generally the case for relationships
having a cardinality greater than 1 at both ends (known as Many-Many relationships). (There will be more
about these additional tables in Chapter 7.) The tables are shown in Figure 2-14 as they would look in Microsoft
Access. Three tables correspond to the classes in Figure 2-12 and the extra table, PlantUse, gives us somewhere
to keep the relationships between plant species and uses (Figures 2-7 and 2-8). The other relationships between

the classes can be represented within the database by setting referential integrity between the four tables (more
about this in Chapter 7).

s \

Genus Species (plantuse Use
¥ genus_name ¥ speciesiD ¥ plant .d- ¥ use_name
species_name ¥ use
common_name
OO
genus

Figure 2-14. Representing classes and relationships in Microsoft Access

genus_name -~ speciesiD ~ species_name ~ common_name v genus «~

Acacia 1 viscosa ake-ake Dodonaea
:TSCU'”S 2 atlantica atlas cedar Cedrus

?us : 3 nigra black walnut Juglans
Aristotelia : 3
=R 4 melanoxylon Tasmanian blackwood Acacia
Boronia 5 hippocastanum Horse Chestnut Aesculus
Brachyglottis 6 glutinosa Black alder Alnus
Cedrus 7 incana grey alder Alnus
Chaenomeles 8 cordata Italian alder Alnus
Chonocios 9 serrata Wineberry ; Mako Mako Aristotelia
Clibys 10 pendula Silver birch Betula
Table Genus Table Species

(The value of genus must be one of the values in the Genus table)

use v plant ~ use v

bee food 1 hedging

bird food 1 shelter
coppicing 1 soil stability
firewood 2 shelter
hedging 3 firewood
shelter 3 shelter

soil stability 3 soil stability
timber 4 bird food

Table Use Table PlantUse

Figure 2-16 shows a very basic form for entering data about a particular species, It was created using the
Form Wizard in Microsoft Access. This form allows us to enter data that will end up as one row in the Species
table and several rows in the PlantUse table (one for each use for this particular species). The form also provides
convenient ways to establish the relationships between a species and its genus and uses by providing drop-
down lists that will contain each of the possible genus or use objects. This is one possible solution to satisfy the
requirements of use case 3 (maintaining species data) in an accurate and convenient way.

p—

=8] SpeciesForm

speciesiD 1 \
species name viscosa J Drop down list
b - 3 to choose genus
common name ake-ake J
genus ;bgd_o‘ﬁ;é;
PlantUse [4 Uton = Drop down list
* — to choose use
~ shelter 4\
~ ~ hedging [
Sub form to ‘soil stability
choose multiple *
uses which will
end up in Record: 4 4 20f3 > M & No F
\ Plant Use table
|Record:l4 10f105 » » b & No Filt Search |4D 4

PlantUse

Use ID Genus Species Name Common Name
bird food
£ Acacia melancxylon Tasmanian blackwoed
7 Alnus ncana grey alder
28 Eucalyptus nichellii Black peppermint gum
coppicing
30 Eucalyptus gunnii cider gum
& Acacia melancxylon Tasmanian blackwoed
28 Eucalyptus nichellii Black peppermint gum
firewood
& Alnus glutinesa Black alder
3 Juglans nigra black walnut
hedging
1 Dodonaea viscosa ake-ake

2-17. A simple report satisfying the use case for providing information on plants suitable for a specific use

We could create a similar report to Figure 2-17, by grouping our data by genus instead of use. However, there
are many different ways to access information from the database. Figure 2-18 shows a very simple web page view

of our Access database. It allows users to select a genus and to see the associated species and uses (the web page
was developed with Microsoft Expression Web).

genus name speciesiD species name common name use
Dodonaea 1 viscosa ake-ake shelter
Dodonaea 1 viscosa ake-ake hedging
Dodonaea 1 viscosa ake-ake soil stability
Dodonaea Y,

Figure 2-18. A simple web page front end satisfying the use case for returning plant information grouped by genus

analysis

>
Real world Abstract world

O AR P
/ 1. Maintain plant data SINGE S S D

Problem % S5 Y

User 2. Report on plants R b
- e

——— Species
3. Report on uses Genus speciesiD Use
PlantUse genus_name species_name [————name d .
Use ID Genus SpeciesNeme CommonName |— -1 1.7 [common_name | 0-n O.n GSIgn
bird food
& Aecia melancayicn Tasmanian blackwood
7 Alnus niane grey alder
28 Eucalyptus nicholii Black peppermint gum
coppicing
- 30 Eucalyptus gunnli cider gum ——— I : -
Solution = R .
- ’ .. - ¥ wpeor - v - ¥ ute_mame |
3&«.«&«» = % o mae S pssemmEn o _\\ «::n::_ww v :0:' v
m tommon_rame
6 Alnus §lunncsa Black 3ioer J s ‘
3 Juglans ngn black walnut
hedging
speciesiD 1 1 Dodenaes viscosa aeake
ey —
0 chosse genss
common name ake-ake 2
genus Dodonaea - g
S F o = '
shelter
hecging D ‘
soil stability (

[Recora w ¢ 2003 » wr [C implementation

A small sports club keeps information about its members and the fees they pay. The secretary wants to be
able to record when members pay and print a report similar to that in Figure 2-20.

last_name ~ first name - phone - type ~ gender - fee - date_paid ~

‘Smith Jane 563201 Full F 220 21/09/2011
‘Wilson Harry 375967 Full M 220 19/09/2011
‘Green Bert 439871 MidWeek M 150

Jones Bert 295784 Social F 80

Smith Sharon 387648 MidWeek F 150 16/08/2011

ure 2-20. Membership data for a small club

a) Think about when the different pieces of data might be entered. Sketch an initial use
case diagram for data entry.

b) Consider what different things you are keeping information about and sketch a
simple class diagram.

c) What options could you suggest to the club for different ways a report could be
presented? Does your class diagram have the information readily available?

