


CHAPTER 3 N INITIAL REQUIREMENTS AND USE CASES

27

!e "rst thing an analyst must do is understand the client’s problem in suf"cient detail to help determine the 
input and output requirements (both immediate and potential). !ese can be expressed in use cases. !e analyst 
then needs to develop a data model that will support those requirements. As you shall see in later chapters, the 
data model provides considerable insight into the details of a system, so the use cases and data model are often 
developed in tandem.

Establishing the use cases is not a simple problem. Users or clients seldom have a clear idea of the whole 
process. Many database projects fall into one of the two categories described in the next sections, and it is useful 
to look at these from the client’s perspective.

Data Minding
A data–minding project involves a client who has data that needs to be looked after. !is is often the case for 
research results. A scientist may devise an experiment to collect data that will allow a specialist statistical analysis 
to be undertaken. !e analyst’s responsibility here is to think ahead and ask questions about how else the data 
might be used, and store it in such a way as to allow for the immediate and possible future requirements. !is 
process is depicted in Figure 3-3.

Figure 3-2. An analyst’s view of a typical database system

Use cases for data
entry

INPUT

OUTPUT

MODEL
Data model

Use cases for
information output









CHAPTER 3 N INITIAL REQUIREMENTS AND USE CASES

35

Now that we have a clearer idea of the objectives and the scope of the system, we can return to our list of jobs 
that involve data entry (which appears earlier in Table 3-1) and decide what interaction with the system needs to 
take place at each point. !e interactions are shown in Table 3-2.

!e interactions in Table 3-2 form the basis for our "rst attempt at writing down some data entry use cases. 
How big should each use case be? Should we combine some tasks or split others into more than one use case? 
!e overriding consideration is readability and communication. At the "rst pass, about "ve to ten use cases is 
enough (and not too many) to give a clear view of the components of a small problem.

We could consider combining all the tasks that involve data about an order into one use case (i.e., entering 
the original order, adding the driver contact, and updating the delivery time). However, for this problem these 
tasks are all quite separate, performed at di#erent times, and possibly by di#erent people. It may not be possible 
to assign a driver to an order immediately (during busy times we may have to wait to see which driver becomes 
available "rst), so entering the driver contact data should be a separate task from entering the order. Similarly, 
recording the delivery time is a separate task performed at a di#erent time. Each of these tasks to do with 
updating an order are central to the whole business and will be repeated several times a day, so it is reasonable to 
consider providing each with its own use case. However, the mechanics of adding the driver contact and adding 
the delivery time are almost identical in that information about a particular order has to be found and then 
updated. We can (if we feel like it) combine these into one use case called, for example, “Update Order Status.”

!inking about updating the status of an existing order leads us to ponder how the user will be able to locate 
a particular order. It might be useful to provide lists of orders yet to be assigned a driver or yet to be delivered. 
We will not look at speci"c user interface design at this stage (i.e., how such a list would be presented or how 
a user might select the appropriate one); however, making such information available will be important. We 
have enough data stored to be able to "nd orders with no driver contact number or no delivery time. Given that 
this information will be almost essential to the receptionist and it is readily available in the system, we will add 
reporting on uncompleted orders as a use case also. Example 3-3 shows the use cases so far.

EXAMPLE 3-3. INITIAL USE CASES FOR MEAL DELIVERIES

Figure 3-5 shows the initial use cases for the meal delivery problem, and the text for each use case is given 
after the figure.

Table 3-2. Physical User Tasks for Data Entry and Interaction with the Proposed System

Task Physical Job Interaction with System
0 Record available meals. Enter and maintain data about each item that can be ordered (ID, 

description, current price).
1 Take order. Enter order data (order number, time, address, phone) and the ID of each 

meal required (assume for now that prices don’t change).
2 Dispatch driver. Record driver’s contact number with appropriate order.
3 Pick up meals. Nothing.
4 Deliver meals. Record delivery time for the appropriate order (here or possibly at the next step).
5 Enter time sheet. Nothing.





CHAPTER 3 N INITIAL REQUIREMENTS AND USE CASES

36

s Use case 1: Maintain meal data. Enter and update data on meals (ID, description, current price).

Use case 2s : Enter an order. Enter initial order information (order number, date, address, phone) and for 
each meal record the ID. (This assumes prices do not change. We will consider price changes later in
the chapter in the section “Changing Prices.”) Each meal must be one that is already in the system.

s� Use case 3: Update order status. For a particular order already in the system, add driver contact 
number or delivery time.

s Use case 4: Report on order status. Retrieve all orders satisfying required status (e.g., no driver contact
number or no delivery time).

What Is the First Data Model?
Now that we have some idea of the data we need to maintain, we can sketch a !rst data model for the problem. 
We clearly have data about at least two separate things, orders and the types of meals that can be supplied, and 
so have two classes as shown in Figure 3-6. "e objects of the Meal class will be each of the meal types that appear 
on the menus in a client’s motel or hotel room.

Figure 3-6. First attempt at a data model for meal delivery database

Figure 3-5. Use cases for meal deliveries

Receptionist

1. Maintain meal data 2. Enter an order

3. Update order status

4. Report on order status



CHAPTER 3 N INITIAL REQUIREMENTS AND USE CASES

37

In Figure 3-6, we have separated each of the pieces of data we are recording and put them as attributes in 
the most likely class. Let’s recap from Chapter 2 what a model like Figure 3-6 means. Reading from left to right, 
we have that a particular order (e.g., “to Colombo Street at 8:30 on April 1st”) can involve one or more meal types. 
From right to left, we have that each type of meal (e.g., chicken vindaloo) could appear on many orders but may 
not appear on any (e.g., no one may ever want to order spinach and anchovy pizza). Just in case there is any 
confusion, when we talk about a meal, we mean a type of meal as it appears on the menu. We don’t mean that a 
particular portion of curry may end up on more than one order!

Note that this model is only a !rst attempt and overlooks some important details that we will consider later 
in the chapter.

What Are the Output Use Cases?
We now need to reconsider the required reporting and summarizing tasks in terms of the data we are keeping, as 
in the data model in Figure 3-6. We have already determined that it would be useful to report on orders awaiting 
the assignment of a driver or orders yet to be delivered, and have included that in use case 4 in Example 3-3.

Let’s think about the statistics on orders and delivery times that are part of our main objective. "e statistics 
on orders can be found by considering the Order objects. We can !nd the value of each order by summing 
the prices of each meal associated with that order, given (for now) that prices remain constant. We can also 
determine the time taken for each order by subtracting the order_time from the delivery_time. By selecting 
those order objects that are in the date period of interest, we can determine di#erent statistics about the times 
(e.g., averages or totals) during a particular week or month or whatever is required. We have enough information 
stored in our data model to satisfy the requirements of our main objective.

It is useful at this point to look at the data we are storing and see what other information can be deduced. 
Given the data we have, what other statistics could we supply? How about grouping all the orders for a particular 
type of meal? It might be useful to ask the client whether, given that much of the information is already stored, 
they like to know how much gross income came from pizzas, or how many people ordered curries, or if orders 
containing particular types of meals took longer to deliver. Do we have the information in a form that would 
make this type of report readily available?

We have information about particular meals (e.g., a chicken vindaloo or a lamb korma) but it is not easy to 
!nd out about di#erent categories of meals (pizzas versus curries). Maybe it would be useful to introduce a new 
attribute or class, Category. Each meal could then be assigned a particular category. We will look more closely 
at whether something like a category should be an attribute or a class in Chapter 5, but for now take my word 
for it that a Category class would be a good idea. "is is only a small extension to the problem and may provide 
considerable additional information for little extra e#ort or cost. With our analysts’ hats on, we should at least 
discuss this addition with the client.

Even if we don’t include an additional Category class, we still need at least one further use case to deal with 
the statistical output. Because all the reports are broadly similar, we can describe them quite clearly in one use 
case as shown in Example 3-4.




