Group

group_name
supervisor_name
contact_address
contact_phone
date_in

date_out

Guest

1o

1

name
adult

Room

0.1

4-1. Initial data model for the current occupancy of a small hostel

1.

1

number
type

group_name:
supervisor_namer:
contact_address:
contact_phone:

date in:
date out:

Green High
J.Smith

27 Mill Lane
245-8975
Ath April

7th April

AN

name: J. Smith

adult:Yes

name:J. Brown

adult: No

name:T. Jones

adult: No

A

A 4

A

\ 4

A

A 4

number: 101

type: Deluxe
number: 102
type: Standard
number: 103
type: Standard
number: 104
type: Deluxe

name:T. Green
adult: No \

number: 105
type: Standard

group_name: Boys High
supervisor_namer: JA.Taylor

N
A 4

contact_address: 48 Hills Rd ”3”75{-' A. Taylor number- 106
contact phone: ~ 387-9087 adult: Yes

N
A 4

name: W. Long number: 107
adult: No type: Standard

type: Standard
date_in: 2nd April
date_out: 6t April \

name:D. Foly number: 108
adult:No type: Standard

A\
A 4

4-2. Objects and relationship instances consistent with Figure 4-1

Student Course Example

Consider the data model in Figure 4-3, which shows a relationship between students and courses in which they
enroll.

Student | ? ewolsin 2| Course

Figure 4-3. Data model for students enrolling in courses

Customer Order Example

Here is an easier example. (Or is it?) We keep information on customers and the orders they place. Our first
instinct is to say that customers can place many orders and each order is placed by one customer. This can be

represented as in Figure 4-4.

places
Customer |? ? Order

Figure 4-4. Data model for customers placing orders

Insect Example

Here is another example of how investigating the optionalities of a relationship can lead to questions about the
scope of the problem. Figure 4-5 shows part of a possible data model from Example 1-3 in which farms were
visited and several samples of insects were collected. A Visit object would contain information about the date
and conditions of a particular visit and would be associated with several Sample objects. Each sample object
would contain information about the number of insects collected.

Visit Sample
7.1 2.n

Figure 4-5. Data model for collecting samples

Insect Example

In the previous section we looked at the example of a scientist visiting a farm to collect insect samples. Some
insects might behave differently if it is fine or raining so it may be important to record information about the
weather when the sample was collected. To record the weather conditions consistently, the scientist may

decide to choose from one of a number of categories. Introducing a Weather class with objects for the different
conditions (e.g. fine, overcast, raining) can ensure that this information is recorded consistently. Part of a possible

class diagram to represent the data is shown in Figure 4-6.

Visit

Weather

-3

0..n
Sample

Figure 4-6. Associating a weather category with a visit

&

1

Reading the relationship between weather category and visit from left to right, it is reasonable that a visit will
have one weather type that describes it, but there might also be occasions when a thunderstorm arrives while the
last few samples are being collected. If so, do we care? The answer will, of course, depend on the client, but it is
up to the analyst to ask the question and propose some possibilities.

At one extreme, the conditions under which each individual sample is collected may be vital. In this case, it
might be more sensible to associate each sample with its own weather condition, as shown in Figure 4-7.

Visit

1.1

0..n

Sample Weather
0a 1.1

Figure 4-7. Associating each sample with a weather category

Sports Club Example

Here is another little snippet of a database problem. A local sports club may want to keep a list of its membership
and the team for which each member currently plays (SeniorB, JuniorA, Veteran, etc.). One way to model this
data is shown in Figure 4-8.

Member Team

Figure 4-8. Members and their current teams

Sports Club Example

To illustrate how the sports club might lose its historical data, let’s look at some simple data as it might be kept
in a database table. If each member is associated with just one team, that team becomes a characteristic of the
member, and the relationship can be represented as an attribute in the Member class as in Figure 4-9.

member_no - last_name +1 first_name + team ~

152 Abell Walt SeniorB
103 Anderson James JuniorA
276 Avery Graeme JuniorA
287 Brown Bill JuniorA
298 Burns Lance Veteran

Figure 4-9. Members and their current teams

Member

member_no plays for Team
last_name 0 0. n|team name
first_name =1 .

4-10. Members and the teams for which they play

Departments Example

Figure 4-11 is an example that often appears in textbooks. Reading from left to right, we have that each
department has one employee as its manager. But clearly this means one at a time. Over time, the department

will have several different managers.

0.n 1.1

Figure 4-11. Each department has a manager.

The important question for this situation is, “Do we want to keep track of former managers?” Why are we
keeping information about managers at all? If it is just to have someone to call when something goes wrong,
probably the current manager is all that is required. However, if we want to know who was in charge when
something went wrong last year, we will need to keep a history. The data model will need to change so that a
department can be associated with several managers as in Figure 4-12.

Dept is managed Dy Employee
0.n 1..n

Figure 4-12. A department has several managers over time.

We will see in the next section how the introduction of an intermediate class will allow us to keep the dates
for each manager.

Insect Example

Here is a real example of a problem arising in our scientific database of insect samples. To put the data in
perspective, we need to know that the main objective of this long-term project was to see how the numbers of
insects change as farming methods evolve over the years. The farms selected represented different farming types
(organic, cropping, etc.). Throughout the duration of the project, each farm was visited several times to collect
samples. Figure 4-13 shows part of an early attempt at a data model.

FarmType Farm Visit
1+ 0.o 1.7 O.n

Figure 4-13. Visits to farms of different types

Is there any data that we need to record that depend on particular instances of each of the
classes in our Many-Many relationship?

In this example, the question would be:

Is there any data that depend on a particular player and a particular team?

And the answer is:

Yes—the dates that player played for that team.

ClassA ClassB

ClassA NewClass ClassB

Figure 4-14. Introducing a new class in a Many-Many relationship

In situations where we have data that depend on instances of both classes in a Many-Many relationship,
the Many-Many relationship is replaced by a new class and two 1-Many relationships. The many ends of the
new relationships are always attached to the new intermediate class. We will see what this means for some of the
examples we have already examined.

Sports Club Example

Let’s reconsider the member and team problem. We'll put some attributes in the classes to make it clearer what
information each is maintaining. The model is shown in Figure 4-15.

| Member

o . Team

: plays for

Iy
first name |0-N 0. n|practice_night

L'

Figure 4-15. Many-Many relationship between members and teams

As we have already mentioned, the date that a particular member plays for a particular team cannot live in
the Member class (because a member will play for many different teams over time) nor can it live in the Team class.
Figure 4-16 introduces a new intermediate class, Contract, in the same way as was done in Figure 4-14.

Member :

|member_no . Contract | Team |
|last_name date team name
first_name |4 4 o.n o.n 1..1|Practice_night

Figure 4-16. Intermediate class, Contract, to accommodate the date a member played for a team

Reading from the middle class outward, the model tells us that each contract is for exactly one team and
exactly one member. Reading from the outside inward, we see that each member can have many contracts as can
each team. Figure 4-17 shows some objects that might occur in such a data model.

2011 Veteran

103 Thursday
James
Anderson 2010

152 2011
Abell SeniorB
\ Tuesday

2012

276
Graeme »| 2010
Avery
JuniorA
2012 Tuesday
287
Bill
Brown 2011

Figure 4-17. Some possible objects of the Member, Contract, and Team classes

We can now see what years members played for particular teams. We can see that Bill Brown (287) played
for the JuniorA team in 2004 and for the SeniorB team in 2005. These data would be stored in database tables as
shown in Figure 4-18.

member_no ~ last_ name +t first name ~ team_name v practice_night ~

152 Abell Walt JuniorA Tuesday
103 Anderson James SeniorB Tuesday
276 Avery Graeme Veteran Thursday
287 Brown Bill Under 18 Monday
298 Burns Lance

Member Team

member + team <~ year ~
103 JuniorA 2011
276 JuniorA 2010
287 JuniorA 2011
287 SeniorB 2012
152 SeniorB 2010
152 Veteran 2012
152 SeniorB 2011

Contract

Figure 4-18. Data for players, contracts, and teams

Student Course Example

Let’s now return to the Many-Many relationship of students enrolling in courses (Figure 4-3). This isn’t just a
historical problem, although we clearly will want to know when the student completed the course. But even if we
were only keeping student enrollments for a single year or semester, we should still look to see whether there is
missing information that might require an extra class. The question that needs to be asked is:

Are there any data that I want to keep that are specific to a particular student and his or her
enrollment in a particular course?

One obvious piece of data that fits the preceding criteria is the result or grade. Once again, we cannot keep
the grade with the Student class (because it requires knowledge of which course) nor with Course class (because
the grade depends on which student). In the same way as we dealt with this situation in Figure 4-14, we can
introduce a new class, Enrollment, between the Student and Course classes as shown in Figure 4-19.

tS;Ud:rg Enrolment Course
;aumzn year code
address 1.1 0..n|result 0..n 1..1 |name

Figure 4-19. Intermediate class to accommodate the result (and the year)

Meal Delivery Example

As a final example of when we might need an additional class to keep information about a Many-Many
relationship, let’s look again at the meal delivery problem (Example 3-1) from the previous chapter. The initial
data model had a Many-Many relationship between types of meal and orders. A particular type of meal (a
chicken vindaloo, say) might appear on many orders, and a particular order may include many different meal
types, as shown in Figure 4-20.

Order

order_number
date Meal
address meallD
phone description
driver_contact price
order_time
delivery_time

Figure 4-20. Orders for different meal types

Once again, our problem of where to put the additional data is solved by including a new class as shown in
Figure 4-21.

Order

order_number
date Meal

address OrderMeal meallD
phone quantity description
driver_contact | 1-1 1.n 0.n 1T 5ice
order_time
delivery_time

Figure 4-21. Orders for different types of meal-with additional class to store quantities

For some problems, it can be difficult to come up with a meaningful name for the intermediate class. In
such a case, it is always possible to use a concatenation of the two original class names as we have done here with
Order/Meal. We could maybe have called the class Orderline, in this example, as it represents each line in the
order (i.e., a meal and the quantity). You might find it helpful to sketch some objects of the three classes in Figure
4-21 to clarify what is happening.

When a Many-Many Doesn’t Need an Intermediate Class

A few Many-Many relationships contain complete information for a problem without the need for an
intermediate class in the data model. Problems that involve categories as part of the data often do not require

an additional class. Example 1-1, “The Plant Database,” involved plants and uses to which they could be put. The
original data model is repeated in Figure 4-22.

Figure 4-22. Plants and their uses

Plant

plantiD

genus

species
commmon_name

Use

name

Figure 4-23 shows a first draft of modeling the situation where a publishing company wants to keep
information about authors and books. Consider the possible optionalities at each end of the relationship
writes and so determine some possible definitions for a book and an author.

writes
Author Book

ure 4-23. Consider possible optionalities for authors writing books.

Figure 4-24 shows a possible data model for cocktail recipes. The Many—Many relationship uses can be
navigated in either direction. To find out the ingredients in a Manhattan or to discover the possible uses for
that bottle of Vermouth. What is missing?

, uses ,
Cocktall Ingredient

1..n 1..n

ure 4-24. Cocktails and their ingredients. What is missing?

Exercise 4-3.

Part of the data model about guests at a hostel is shown in Figure 4-25. How could the model be amended to
keep historical information about room occupancy?

Guest occupies Room
number
name P
0.1 1.1 [YP

ure 4-25. How could this be amended to keep historical information about room occupancy?

