
CHAPTER 4 N LEARNING FROM THE DATA MODEL

44

direction that a room can be associated with at most one guest but maybe none. In normal speak, we have that
groups consist of a number of guests, and each guest has a room. Rooms are for one guest only, and they may
not all be full. Some possible instances of these objects and relationships are shown in Figure 4-2. We have

Figure 4-1. Initial data model for the current occupancy of a small hostel

Figure 4-2. Objects and relationship instances consistent with Figure 4-1

group_name: Green High
J.Smith

245-8975
4th April
7th April

27 Mill Lane
supervisor_namer:
contact_address:
contact_phone:
date_in:
date_out:

group_name: Boys High
JA.Taylor

387-9087
2nd April
6th April

48 Hills Rd
supervisor_namer:
contact_address:
contact_phone:
date_in:
date_out:

number:name: J. Smith
adult: Yes

name: J. Brown
adult: No

name: T. Jones
adult: No

name: T. Green
adult: No

name: A. Taylor
adult: Yes

name: W. Long
adult: No

name: D. Foly
adult: No

101
Deluxetype:

number: 102
Standardtype:

number: 103
Standardtype:

number: 104
Deluxetype:

number: 105
Standardtype:

number: 106
Standardtype:

number: 107
Standardtype:

number: 108
Standardtype:

CHAPTER 4 N LEARNING FROM THE DATA MODEL

44

direction that a room can be associated with at most one guest but maybe none. In normal speak, we have that
groups consist of a number of guests, and each guest has a room. Rooms are for one guest only, and they may
not all be full. Some possible instances of these objects and relationships are shown in Figure 4-2. We have

Figure 4-1. Initial data model for the current occupancy of a small hostel

Figure 4-2. Objects and relationship instances consistent with Figure 4-1

group_name: Green High
J.Smith

245-8975
4th April
7th April

27 Mill Lane
supervisor_namer:
contact_address:
contact_phone:
date_in:
date_out:

group_name: Boys High
JA.Taylor

387-9087
2nd April
6th April

48 Hills Rd
supervisor_namer:
contact_address:
contact_phone:
date_in:
date_out:

number:name: J. Smith
adult: Yes

name: J. Brown
adult: No

name: T. Jones
adult: No

name: T. Green
adult: No

name: A. Taylor
adult: Yes

name: W. Long
adult: No

name: D. Foly
adult: No

101
Deluxetype:

number: 102
Standardtype:

number: 103
Standardtype:

number: 104
Deluxetype:

number: 105
Standardtype:

number: 106
Standardtype:

number: 107
Standardtype:

number: 108
Standardtype:

CHAPTER 4 N LEARNING FROM THE DATA MODEL

44

direction that a room can be associated with at most one guest but maybe none. In normal speak, we have that
groups consist of a number of guests, and each guest has a room. Rooms are for one guest only, and they may
not all be full. Some possible instances of these objects and relationships are shown in Figure 4-2. We have

Figure 4-1. Initial data model for the current occupancy of a small hostel

Figure 4-2. Objects and relationship instances consistent with Figure 4-1

group_name: Green High
J.Smith

245-8975
4th April
7th April

27 Mill Lane
supervisor_namer:
contact_address:
contact_phone:
date_in:
date_out:

group_name: Boys High
JA.Taylor

387-9087
2nd April
6th April

48 Hills Rd
supervisor_namer:
contact_address:
contact_phone:
date_in:
date_out:

number:name: J. Smith
adult: Yes

name: J. Brown
adult: No

name: T. Jones
adult: No

name: T. Green
adult: No

name: A. Taylor
adult: Yes

name: W. Long
adult: No

name: D. Foly
adult: No

101
Deluxetype:

number: 102
Standardtype:

number: 103
Standardtype:

number: 104
Deluxetype:

number: 105
Standardtype:

number: 106
Standardtype:

number: 107
Standardtype:

number: 108
Standardtype:

CHAPTER 4 N LEARNING FROM THE DATA MODEL

46

Optionality: Should It Be 0 or 1?
As described in Chapter 2, the optionality of one end of a relationship is the smallest number of objects that
can be associated with an object at the other end. !is is usually 0 or 1. For example, in Figure 4-1, reading the
relationship between guest and room from left to right, we have that a particular guest must be associated with a t
room (optionality 1), whereas reading the relationship from right to left, we see that a particular room may have
no related guest (optionality 0).

Optionalities can provide a great deal of information about the de"nitions of classes and the scope of
the problem. We will look at a few small examples, each of which illustrates some aspect of deciding on the
appropriate optionality.

Student Course Example
Consider the data model in Figure 4-3, which shows a relationship between students and courses in which they
enroll.

On "rst sight this is quite trivial: a student can enroll in many courses, and a course can have many students
enrolled in it. What about the optionalities? Can a student be enrolled in no courses? Our normal conversational
de"nition of a student is someone who is studying or, more accurately, is formally enrolled in a course (which is
quite di#erent really!). What is our de"nition of student for this database? It has been a long time since I’ve been
able to be described as a student in normal conversation, but I am quite sure I still feature in the student database
at my former university. For the purpose of this example then, we might de"ne a student as someone who is, or
has been, enrolled in a course.

Does it make any sense to have a “student” in our database that is not and has never been enrolled in any
courses? What about a person who has been accepted into a university but has not yet made "nal decisions
about any speci"c courses? Is this person a student? !e university would certainly want to keep information
about such a person (her ID, name, address, and so on). We can accommodate this situation by expanding our
de"nition of a student to include people accepted by and/or registered with the university.

What about a person who has contacted the university and asked to be sent information about enrollment?
Any typically cash–strapped institution will want to keep information about such a person. Asking this question
starts to involve issues about the scope of the problem as well as the de"nition of a student. It is important
that questions such as “Exactly who are these people you call students?” are considered right at the start of the
analysis process. Is the system to include contact details for everyone who has ever expressed an interest in
attending the university, or is the scope to be restricted (at least for the time being) to records of current and
former students?

Clearly, only the client can answer these questions. It is useful to see how careful consideration of the details
of even the most simple data model can lead to important questions about much wider aspects of the problem.
Asking whether a student must be enrolled in a course may seem pedantic at "rst, but until we can answer that
question clearly, we have not even begun to understand the problem we are trying to solve.

Reading the relationship from right to left and questioning whether a course must have a student enrolled
in it leads to a similar debate about how we de"ne a course. What data might we want to keep about a course?
!ink about all the di#erent situations we might need to deal with. We might need to consider former, current, or
proposed courses; popular courses o#ered more than once concurrently (two streams); and unpopular courses

Figure 4-3. Data model for students enrolling in courses

CHAPTER 4 N LEARNING FROM THE DATA MODEL

47

that are on the books but lack students. You cannot come up with absolute answers without being able to discuss
the situation with a client, but you can come up with some possible de!nitions for consideration.

Customer Order Example
Here is an easier example. (Or is it?) We keep information on customers and the orders they place. Our !rst
instinct is to say that customers can place many orders and each order is placed by one customer. "is can be
represented as in Figure 4-4.

What about the optionalities? Consider the relationship from left to right. Can a customer be associated with
no orders? "is depends on the de!nition of a customer. For the purposes of many businesses, it might be anyone
I am hopeful of selling something to. A working de!nition such as anyone who has ever placed an order and
other people who are to be sent catalogs seems reasonable and suggests an optionality of 0 (i.e., customers in our s
database have not necessarily placed an order). However, this de!nition should probably spark a few questions
such as, “Do you want to be able to identify people who have previously placed orders but who are now fed up
with being sent catalogs?”

Reading the relationship from right to left, we want to know whether each order must have an associatedt
customer. "is seems trivial. What is the point of an order if we don’t know who it is for? If an order arrives in the
mail with no name or address, it would be reasonable to say that it should not be entered in the database, and so
from this perspective we can insist that every order must have a customer (optionality 1).

However, there is a subtle di#erence between knowing for whom an order has been placed and relating it
to a customer object in the database. A written order may come in the mail from Mrs. Smith of Riccarton Road.
While we know who placed the order, that is di#erent from associating it with a customer. We may have to create
a new object if Mrs. Smith is a new customer, or we may be faced with deciding which of the existing three Mrs.
Smiths this order is from. "e problem of distinguishing customers with similar details or deciding whether two
or more entries in the customer database actually refer to the same real person can be dif!cult. Once again, we
are not trying to solve any of these issues just now. We are simply using the data model to make us think clearly
about some of the issues we will have to confront.

Insect Example
Here is another example of how investigating the optionalities of a relationship can lead to questions about the
scope of the problem. Figure 4-5 shows part of a possible data model from Example 1-3 in which farms were
visited and several samples of insects were collected. A Visit object would contain information about the date
and conditions of a particular visit and would be associated with several Sample objects. Each sample object
would contain information about the number of insects collected.

Figure 4-4. Data model for customers placing orders

Figure 4-5. Data model for collecting samples

CHAPTER 4 N LEARNING FROM THE DATA MODEL

47

that are on the books but lack students. You cannot come up with absolute answers without being able to discuss
the situation with a client, but you can come up with some possible de!nitions for consideration.

Customer Order Example
Here is an easier example. (Or is it?) We keep information on customers and the orders they place. Our !rst
instinct is to say that customers can place many orders and each order is placed by one customer. "is can be
represented as in Figure 4-4.

What about the optionalities? Consider the relationship from left to right. Can a customer be associated with
no orders? "is depends on the de!nition of a customer. For the purposes of many businesses, it might be anyone
I am hopeful of selling something to. A working de!nition such as anyone who has ever placed an order and
other people who are to be sent catalogs seems reasonable and suggests an optionality of 0 (i.e., customers in our s
database have not necessarily placed an order). However, this de!nition should probably spark a few questions
such as, “Do you want to be able to identify people who have previously placed orders but who are now fed up
with being sent catalogs?”

Reading the relationship from right to left, we want to know whether each order must have an associatedt
customer. "is seems trivial. What is the point of an order if we don’t know who it is for? If an order arrives in the
mail with no name or address, it would be reasonable to say that it should not be entered in the database, and so
from this perspective we can insist that every order must have a customer (optionality 1).

However, there is a subtle di#erence between knowing for whom an order has been placed and relating it
to a customer object in the database. A written order may come in the mail from Mrs. Smith of Riccarton Road.
While we know who placed the order, that is di#erent from associating it with a customer. We may have to create
a new object if Mrs. Smith is a new customer, or we may be faced with deciding which of the existing three Mrs.
Smiths this order is from. "e problem of distinguishing customers with similar details or deciding whether two
or more entries in the customer database actually refer to the same real person can be dif!cult. Once again, we
are not trying to solve any of these issues just now. We are simply using the data model to make us think clearly
about some of the issues we will have to confront.

Insect Example
Here is another example of how investigating the optionalities of a relationship can lead to questions about the
scope of the problem. Figure 4-5 shows part of a possible data model from Example 1-3 in which farms were
visited and several samples of insects were collected. A Visit object would contain information about the date
and conditions of a particular visit and would be associated with several Sample objects. Each sample object
would contain information about the number of insects collected.

Figure 4-4. Data model for customers placing orders

Figure 4-5. Data model for collecting samples

CHAPTER 4 N LEARNING FROM THE DATA MODEL

48

Asking whether a sample must be associated with a visit is like the question in the previous section aboutt
whether an order must have a customer. If for this research project our samples only come from farms, it ist
reasonable that we had to visit a farm to collect them, and so each sample should always be associated with a
visit. However, if the scope of the database is broader, with records of samples that have been stored for years and
whose origin is uncertain, we may have to reconsider. If we insist that a sample is associated with a visit then we
will not easily be able to record information about these historical samples.

Asking whether each visit must have an associated sample (should the optionality at the sample end be 0
or 1?) leads to an interesting question. Is it possible that at some time we may want to record visits to farms for
reasons other than collecting samples? !ese questions may seem trivial, but the broad understanding of the
larger problem can only be improved.

A Cardinality of 1: Might It Occasionally Be Two?
Every part of a problem is susceptible to exceptional occurrences. During the analysis of a situation, it is
important to think carefully about di"erent scenarios to ensure that the database will be able to cope adequately
with all the data that may eventuate. Some “exceptions” are really complications that have been overlooked. Real
life and real problems are always complicated. Even something as simple as write down your usual address can s
have hidden dif#culties, as many children in shared custody discover when they have to #ll out an address on
a school form. It might seem picky to insist on asking “Might a person have more than one usual address?” but
thousands of modern–day families cannot be shrugged o" as exceptional.

In this section, we will look at how to deal with “exceptions” that do not warrant a complete overhaul of
the problem but nevertheless are likely to turn up during the lifetime of the database. We have already seen an
example of a likely exception earlier in this chapter in the hostel data model. !ere we considered the case in
which some members of a group might want to leave before the others. In the hostel data model, rather than
complicating the problem by allowing each group to have several dates, we rede#ned what we meant by group for
the purposes of storing the data (i.e., a set of people arriving and leaving on the same dates).

!e following sections provide some other examples where a di"erent de#nition can help cope with some
foreseeable, but unusual, events.

Insect Example
In the previous section we looked at the example of a scientist visiting a farm to collect insect samples. Some
insects might behave di"erently if it is #ne or raining so it may be important to record information about the
weather when the sample was collected. To record the weather conditions consistently, the scientist may
decide to choose from one of a number of categories. Introducing a Weather class with objects for the di"erent
conditions (e.g. #ne, overcast, raining) can ensure that this information is recorded consistently. Part of a possible
class diagram to represent the data is shown in Figure 4-6.

Figure 4-6. Associating a weather category with a visit

CHAPTER 4 N LEARNING FROM THE DATA MODEL

49

Reading the relationship between weather category and visit from left to right, it is reasonable that a visit will
have one weather type that describes it, but there might also be occasions when a thunderstorm arrives while the
last few samples are being collected. If so, do we care? !e answer will, of course, depend on the client, but it is
up to the analyst to ask the question and propose some possibilities.

At one extreme, the conditions under which each individual sample is collected may be vital. In this case, it
might be more sensible to associate each sample with its own weather condition, as shown in Figure 4-7.

!is latter solution may be overkill when the majority of visits have stable weather conditions. It seems
pointless to record the same weather condition for each of 50 samples. A compromise solution may be to say that,
if the weather changes markedly, we will create another visit. !is way all visits have a single associated weather
type, and we can cope with the “exceptional” case by rede"ning what we mean by a visit. For example:

A visit is a time spent on a farm during constant weather conditions on a single day. It is
possible to have more than one visit to a farm per day.

!is compromised solution is similar to our rede"nition of a group for people with di#erent departure and
arrival dates in the hostel example. !e data model remains unchanged, but our revised de"nition of a visit is in
place for the inevitable day when lightning strikes, so to speak.

Sports Club Example
Here is another little snippet of a database problem. A local sports club may want to keep a list of its membership
and the team for which each member currently plays (SeniorB, JuniorA, Veteran, etc.). One way to model this
data is shown in Figure 4-8.

!e data model as it stands does not require all members to be associated with a team (optionality 0 at the
team end). !is means members may be purely social or may miss out on being selected for a team. However,
we should still ask questions about the maximum number of teams with which a member might be associated.
For example, “Can a member play for more than one team and, if so, do we care?” !e data model clearly does
not allow for historical records to be kept. If a player is promoted from one team to another, he will simply be

Figure 4-7. Associating each sample with a weather category

Figure 4-8. Members and their current teams

CHAPTER 4 N LEARNING FROM THE DATA MODEL

49

Reading the relationship between weather category and visit from left to right, it is reasonable that a visit will
have one weather type that describes it, but there might also be occasions when a thunderstorm arrives while the
last few samples are being collected. If so, do we care? !e answer will, of course, depend on the client, but it is
up to the analyst to ask the question and propose some possibilities.

At one extreme, the conditions under which each individual sample is collected may be vital. In this case, it
might be more sensible to associate each sample with its own weather condition, as shown in Figure 4-7.

!is latter solution may be overkill when the majority of visits have stable weather conditions. It seems
pointless to record the same weather condition for each of 50 samples. A compromise solution may be to say that,
if the weather changes markedly, we will create another visit. !is way all visits have a single associated weather
type, and we can cope with the “exceptional” case by rede"ning what we mean by a visit. For example:

A visit is a time spent on a farm during constant weather conditions on a single day. It is
possible to have more than one visit to a farm per day.

!is compromised solution is similar to our rede"nition of a group for people with di#erent departure and
arrival dates in the hostel example. !e data model remains unchanged, but our revised de"nition of a visit is in
place for the inevitable day when lightning strikes, so to speak.

Sports Club Example
Here is another little snippet of a database problem. A local sports club may want to keep a list of its membership
and the team for which each member currently plays (SeniorB, JuniorA, Veteran, etc.). One way to model this
data is shown in Figure 4-8.

!e data model as it stands does not require all members to be associated with a team (optionality 0 at the
team end). !is means members may be purely social or may miss out on being selected for a team. However,
we should still ask questions about the maximum number of teams with which a member might be associated.
For example, “Can a member play for more than one team and, if so, do we care?” !e data model clearly does
not allow for historical records to be kept. If a player is promoted from one team to another, he will simply be

Figure 4-7. Associating each sample with a weather category

Figure 4-8. Members and their current teams

CHAPTER 4 N LEARNING FROM THE DATA MODEL

50

associated with the new team, and we will lose information about his association with his previous team. If the
scope of the database is simply to record current af!liations of members with teams, then that is OK. (If not, just
wait a few moments until the next section.)

Even if we are only keeping information on current team membership, we are always going to come across
the situation where injury or sickness necessitates a member of one team !lling in for another team for a
particular match. How will this a"ect the data model? #is is a question of scope. Why are we keeping this data
and what information do we want to be able to extract from the database? If we want to keep track of which
players played in particular matches, our data model is woefully inadequate. We will need to introduce a Match
class and consider other complications (see Chapter 5).

However, the scope of the problem may simply be to record a person’s main team. #is may be to enable team
members to be on a list to be phoned if a match is canceled or if there is to be a rescheduled practice or a social
outing. If this is the case, the cardinality of 1 in the data model in Figure 4-8 is !ne, so long as it is understood that
the relationship plays for means a player’s r main team rather than just any team they may play for.

A Cardinality of 1: What About Historical Data?
We have had a number of examples of relationships with a cardinality of 1 at one end. A room has one guest; a club
member plays for one team. In both these cases, we have been careful to add the word currently because over time y
a room will have many guests and a player many teams. An important question is, “Do we want our system to keep
track of previous guests or previous team af!liations?” #is is often overlooked during the analysis, and sometimes
the oversight does not become evident for some time. A sports club will !nd its system just !ne for the !rst season
but may get a surprise when the next year’s teams replace the previous ones, which are then lost forever. In this
section, we will look at a few di"erent examples to illustrate how we can manage historical data.

Sports Club Example
To illustrate how the sports club might lose its historical data, let’s look at some simple data as it might be kept
in a database table. If each member is associated with just one team, that team becomes a characteristic of the
member, and the relationship can be represented as an attribute in the Member class as in Figure 4-9.

#e following season when Bill Brown graduates to the SeniorB team, his previous association with the
JuniorA team will be lost. If the historical data are important, the problem must be remodeled to re$ect the fact
that members will be associated with many teams over time. A revised model is shown in Figure 4-10.

Figure 4-9. Members and their current teams

CHAPTER 4 N LEARNING FROM THE DATA MODEL

51

Departments Example
Figure 4-11 is an example that often appears in textbooks. Reading from left to right, we have that each
department has one employee as its manager. But clearly this means one at a time. Over time, the department
will have several di!erent managers.

"e important question for this situation is, “Do we want to keep track of former managers?” Why are we
keeping information about managers at all? If it is just to have someone to call when something goes wrong,
probably the current manager is all that is required. However, if we want to know who was in charge when
something went wrong last year, we will need to keep a history. "e data model will need to change so that a
department can be associated with several managers as in Figure 4-12.

We will see in the next section how the introduction of an intermediate class will allow us to keep the dates
for each manager.

Insect Example
Here is a real example of a problem arising in our scienti#c database of insect samples. To put the data in
perspective, we need to know that the main objective of this long–term project was to see how the numbers of
insects change as farming methods evolve over the years. "e farms selected represented di!erent farming types
(organic, cropping, etc.). "roughout the duration of the project, each farm was visited several times to collect
samples. Figure 4-13 shows part of an early attempt at a data model.

Figure 4-10. Members and the teams for which they play

Figure 4-11. Each department has a manager.

Figure 4-12. A department has several managers over time.

Figure 4-13. Visits to farms of di!erent types

CHAPTER 4 N LEARNING FROM THE DATA MODEL

51

Departments Example
Figure 4-11 is an example that often appears in textbooks. Reading from left to right, we have that each
department has one employee as its manager. But clearly this means one at a time. Over time, the department
will have several di!erent managers.

"e important question for this situation is, “Do we want to keep track of former managers?” Why are we
keeping information about managers at all? If it is just to have someone to call when something goes wrong,
probably the current manager is all that is required. However, if we want to know who was in charge when
something went wrong last year, we will need to keep a history. "e data model will need to change so that a
department can be associated with several managers as in Figure 4-12.

We will see in the next section how the introduction of an intermediate class will allow us to keep the dates
for each manager.

Insect Example
Here is a real example of a problem arising in our scienti#c database of insect samples. To put the data in
perspective, we need to know that the main objective of this long–term project was to see how the numbers of
insects change as farming methods evolve over the years. "e farms selected represented di!erent farming types
(organic, cropping, etc.). "roughout the duration of the project, each farm was visited several times to collect
samples. Figure 4-13 shows part of an early attempt at a data model.

Figure 4-10. Members and the teams for which they play

Figure 4-11. Each department has a manager.

Figure 4-12. A department has several managers over time.

Figure 4-13. Visits to farms of di!erent types

CHAPTER 4 N LEARNING FROM THE DATA MODEL

51

Departments Example
Figure 4-11 is an example that often appears in textbooks. Reading from left to right, we have that each
department has one employee as its manager. But clearly this means one at a time. Over time, the department
will have several di!erent managers.

"e important question for this situation is, “Do we want to keep track of former managers?” Why are we
keeping information about managers at all? If it is just to have someone to call when something goes wrong,
probably the current manager is all that is required. However, if we want to know who was in charge when
something went wrong last year, we will need to keep a history. "e data model will need to change so that a
department can be associated with several managers as in Figure 4-12.

We will see in the next section how the introduction of an intermediate class will allow us to keep the dates
for each manager.

Insect Example
Here is a real example of a problem arising in our scienti#c database of insect samples. To put the data in
perspective, we need to know that the main objective of this long–term project was to see how the numbers of
insects change as farming methods evolve over the years. "e farms selected represented di!erent farming types
(organic, cropping, etc.). "roughout the duration of the project, each farm was visited several times to collect
samples. Figure 4-13 shows part of an early attempt at a data model.

Figure 4-10. Members and the teams for which they play

Figure 4-11. Each department has a manager.

Figure 4-12. A department has several managers over time.

Figure 4-13. Visits to farms of di!erent types

CHAPTER 4 N LEARNING FROM THE DATA MODEL

51

Departments Example
Figure 4-11 is an example that often appears in textbooks. Reading from left to right, we have that each
department has one employee as its manager. But clearly this means one at a time. Over time, the department
will have several di!erent managers.

"e important question for this situation is, “Do we want to keep track of former managers?” Why are we
keeping information about managers at all? If it is just to have someone to call when something goes wrong,
probably the current manager is all that is required. However, if we want to know who was in charge when
something went wrong last year, we will need to keep a history. "e data model will need to change so that a
department can be associated with several managers as in Figure 4-12.

We will see in the next section how the introduction of an intermediate class will allow us to keep the dates
for each manager.

Insect Example
Here is a real example of a problem arising in our scienti#c database of insect samples. To put the data in
perspective, we need to know that the main objective of this long–term project was to see how the numbers of
insects change as farming methods evolve over the years. "e farms selected represented di!erent farming types
(organic, cropping, etc.). "roughout the duration of the project, each farm was visited several times to collect
samples. Figure 4-13 shows part of an early attempt at a data model.

Figure 4-10. Members and the teams for which they play

Figure 4-11. Each department has a manager.

Figure 4-12. A department has several managers over time.

Figure 4-13. Visits to farms of di!erent types

CHAPTER 4 N LEARNING FROM THE DATA MODEL

52

At !rst the data model in Figure 4-13 seemed to be serving its purpose adequately, but this was only because
the farming types had not changed during the time the project had been running. However, real trouble was in
store. A farm can only be associated with one farm type in this model. When a farm did eventually change, say
from a conventional cropping farm to an organic farm, the previous farming type would be lost if the database
was set up this way.

A farm can only be associated with one farming type at a time. "e important question to ask is, “Might the
type change over time, and is it important for the system to record that historical data?” In this case, it was critical
to the whole experiment to keep information about the history of the farm types, but no one had noticed the
problem because the time frames for change were very long.

A Many–Many: Are We Missing Anything?
We have come across quite a few Many–Many relationships in our examples so far. For example, a student can
enroll in many courses, and a course can have many students enrolled in it. If we widen the scope of some of the
examples to include historical data, as in the previous section, a number of 1–Many relationships will become
Many–Many relationships (i.e., departments may have many managers, members many teams, and farms many
types over a length of time).

Often we !nd that we need to keep some additional information about a Many–Many relationship. In the
sports team example, we altered the model of members and teams to allow a member to be associated with
more than one team. However, if we look at the model in Figure 4-10, we have no idea when those associations
occurred. "e historical data will not be of much use without a date attached somewhere. But where will the
date go? In Figure 4-10, we have two classes: Member and Team. "e date does not belong as an attribute of Member
because it will be dependent on which team we are interested in. Similarly, the date cannot be an attribute of the
Team class because there will be di#erent dates for each of the players. "is problem occurs often and is usually
remedied by the introduction of a new class.

We need to ask the question:

Is there any data that we need to record that depend on particular instances of each of the
classes in our Many–Many relationship?

In this example, the question would be:

Is there any data that depend on a particular player and a particular team?

And the answer is:

Yes—the dates that player played for that team.

Figure 4-14 shows how an intermediate class can be incorporated into the Many–Many relationship so that
data that depend on a particular pairing of objects from each class can be included.

CHAPTER 4 N LEARNING FROM THE DATA MODEL

53

In situations where we have data that depend on instances of both classes in a Many–Many relationship,
the Many–Many relationship is replaced by a new class and two 1–Many relationships. !e many ends of the
new relationships are always attached to the new intermediate class. We will see what this means for some of the
examples we have already examined.

Sports Club Example
Let’s reconsider the member and team problem. We’ll put some attributes in the classes to make it clearer what
information each is maintaining. !e model is shown in Figure 4-15.

As we have already mentioned, the date that a particular member plays for a particular team cannot live in
the Member class (because a member will play for many di"erent teams over time) nor can it live in the Team class.
Figure 4-16 introduces a new intermediate class, Contract, in the same way as was done in Figure 4-14.

Reading from the middle class outward, the model tells us that each contract is for exactly one team and
exactly one member. Reading from the outside inward, we see that each member can have many contracts as can
each team. Figure 4-17 shows some objects that might occur in such a data model.

Figure 4-14. Introducing a new class in a Many–Many relationship

Figure 4-15. Many–Many relationship between members and teams

Figure 4-16. Intermediate class, Contract, to accommodate the date a member played for a team

CHAPTER 4 N LEARNING FROM THE DATA MODEL

53

In situations where we have data that depend on instances of both classes in a Many–Many relationship,
the Many–Many relationship is replaced by a new class and two 1–Many relationships. !e many ends of the
new relationships are always attached to the new intermediate class. We will see what this means for some of the
examples we have already examined.

Sports Club Example
Let’s reconsider the member and team problem. We’ll put some attributes in the classes to make it clearer what
information each is maintaining. !e model is shown in Figure 4-15.

As we have already mentioned, the date that a particular member plays for a particular team cannot live in
the Member class (because a member will play for many di"erent teams over time) nor can it live in the Team class.
Figure 4-16 introduces a new intermediate class, Contract, in the same way as was done in Figure 4-14.

Reading from the middle class outward, the model tells us that each contract is for exactly one team and
exactly one member. Reading from the outside inward, we see that each member can have many contracts as can
each team. Figure 4-17 shows some objects that might occur in such a data model.

Figure 4-14. Introducing a new class in a Many–Many relationship

Figure 4-15. Many–Many relationship between members and teams

Figure 4-16. Intermediate class, Contract, to accommodate the date a member played for a team

CHAPTER 4 N LEARNING FROM THE DATA MODEL

53

In situations where we have data that depend on instances of both classes in a Many–Many relationship,
the Many–Many relationship is replaced by a new class and two 1–Many relationships. !e many ends of the
new relationships are always attached to the new intermediate class. We will see what this means for some of the
examples we have already examined.

Sports Club Example
Let’s reconsider the member and team problem. We’ll put some attributes in the classes to make it clearer what
information each is maintaining. !e model is shown in Figure 4-15.

As we have already mentioned, the date that a particular member plays for a particular team cannot live in
the Member class (because a member will play for many di"erent teams over time) nor can it live in the Team class.
Figure 4-16 introduces a new intermediate class, Contract, in the same way as was done in Figure 4-14.

Reading from the middle class outward, the model tells us that each contract is for exactly one team and
exactly one member. Reading from the outside inward, we see that each member can have many contracts as can
each team. Figure 4-17 shows some objects that might occur in such a data model.

Figure 4-14. Introducing a new class in a Many–Many relationship

Figure 4-15. Many–Many relationship between members and teams

Figure 4-16. Intermediate class, Contract, to accommodate the date a member played for a team

CHAPTER 4 N LEARNING FROM THE DATA MODEL

54

We can now see what years members played for particular teams. We can see that Bill Brown (287) played
for the JuniorA team in 2004 and for the SeniorB team in 2005. !ese data would be stored in database tables as
shown in Figure 4-18.

Figure 4-17. Some possible objects of the Member, Contract, and Team classes

103
James
Anderson

Veteran
Thursday

SeniorB
Tuesday

JuniorA
Tuesday

152
Walt
Abell

276
Graeme
Avery

287
Bill
Brown

2011

2010

2011

2010

2011

2012

2012

Figure 4-18. Data for players, contracts, and teams

Member Team

Contract

CHAPTER 4 N LEARNING FROM THE DATA MODEL

54

We can now see what years members played for particular teams. We can see that Bill Brown (287) played
for the JuniorA team in 2004 and for the SeniorB team in 2005. !ese data would be stored in database tables as
shown in Figure 4-18.

Figure 4-17. Some possible objects of the Member, Contract, and Team classes

103
James
Anderson

Veteran
Thursday

SeniorB
Tuesday

JuniorA
Tuesday

152
Walt
Abell

276
Graeme
Avery

287
Bill
Brown

2011

2010

2011

2010

2011

2012

2012

Figure 4-18. Data for players, contracts, and teams

Member Team

Contract

CHAPTER 4 N LEARNING FROM THE DATA MODEL

55

Student Course Example
Let’s now return to the Many–Many relationship of students enrolling in courses (Figure 4-3). !is isn’t just a
historical problem, although we clearly will want to know when the student completed the course. But even if we
were only keeping student enrollments for a single year or semester, we should still look to see whether there is
missing information that might require an extra class. !e question that needs to be asked is:

Are there any data that I want to keep that are speci!c to a particular student and his or her
enrollment in a particular course?

One obvious piece of data that "ts the preceding criteria is the result or grade. Once again, we cannot keep
the grade with the Student class (because it requires knowledge of which course) nor with Course class (because
the grade depends on which student). In the same way as we dealt with this situation in Figure 4-14, we can
introduce a new class, Enrollment, between the Student and Course classes as shown in Figure 4-19.

A student and a course can each have many enrollments, and a particular enrollment is for exactly one
student and one course. If we were to draw some objects, we would get a picture very like that in Figure 4-17 with
students, enrollments, and courses replacing players, contracts, and teams.

Meal Delivery Example
As a "nal example of when we might need an additional class to keep information about a Many–Many
relationship, let’s look again at the meal delivery problem (Example 3-1) from the previous chapter. !e initial
data model had a Many–Many relationship between types of meal and orders. A particular type of meal (a
chicken vindaloo, say) might appear on many orders, and a particular order may include many di#erent meal
types, as shown in Figure 4-20.

What happens if a family orders three chicken vindaloos, one hamburger, and one pork fried rice? Where
do we put these quantities? !e quantity cannot be an attribute in the Order class (for this order there are three

Figure 4-19. Intermediate class to accommodate the result (and the year)

Figure 4-20. Orders for di"erent meal types

CHAPTER 4 N LEARNING FROM THE DATA MODEL

55

Student Course Example
Let’s now return to the Many–Many relationship of students enrolling in courses (Figure 4-3). !is isn’t just a
historical problem, although we clearly will want to know when the student completed the course. But even if we
were only keeping student enrollments for a single year or semester, we should still look to see whether there is
missing information that might require an extra class. !e question that needs to be asked is:

Are there any data that I want to keep that are speci!c to a particular student and his or her
enrollment in a particular course?

One obvious piece of data that "ts the preceding criteria is the result or grade. Once again, we cannot keep
the grade with the Student class (because it requires knowledge of which course) nor with Course class (because
the grade depends on which student). In the same way as we dealt with this situation in Figure 4-14, we can
introduce a new class, Enrollment, between the Student and Course classes as shown in Figure 4-19.

A student and a course can each have many enrollments, and a particular enrollment is for exactly one
student and one course. If we were to draw some objects, we would get a picture very like that in Figure 4-17 with
students, enrollments, and courses replacing players, contracts, and teams.

Meal Delivery Example
As a "nal example of when we might need an additional class to keep information about a Many–Many
relationship, let’s look again at the meal delivery problem (Example 3-1) from the previous chapter. !e initial
data model had a Many–Many relationship between types of meal and orders. A particular type of meal (a
chicken vindaloo, say) might appear on many orders, and a particular order may include many di#erent meal
types, as shown in Figure 4-20.

What happens if a family orders three chicken vindaloos, one hamburger, and one pork fried rice? Where
do we put these quantities? !e quantity cannot be an attribute in the Order class (for this order there are three

Figure 4-19. Intermediate class to accommodate the result (and the year)

Figure 4-20. Orders for di"erent meal types

CHAPTER 4 N LEARNING FROM THE DATA MODEL

56

quantities and they each depend on the particular meal) nor in the Meal class (for there will potentially be
hundreds of orders involving a particular type of meal, each with di!erent quantities).

Once again, our problem of where to put the additional data is solved by including a new class as shown in
Figure 4-21.

For some problems, it can be dif"cult to come up with a meaningful name for the intermediate class. In
such a case, it is always possible to use a concatenation of the two original class names as we have done here with
Order/Meal. We could maybe have called the class Orderline, in this example, as it represents each line in the
order (i.e., a meal and the quantity). You might "nd it helpful to sketch some objects of the three classes in Figure
4-21 to clarify what is happening.

We can also use this new intermediate class to solve one of the other problems we deferred in Chapter 3.
#is was the problem of coping with the price of a meal changing over time. In the Meal class in Figure 4-21,
we can de"ne the price attribute as being the current price for that type of meal. An order placed for that meal
today will be at that price. How do we know what was charged for this type of meal on an order several months
ago? To deal with the problem of changing prices, we can include an attribute, price, in the intermediate class
Order/Meal. #is will be the price charged for a particular meal on a particular order and will not change when
the current price changes in the Meal class. #is way we have a complete history of the prices for each meal on
each order. A price attribute in this intermediate class can allow us to keep historical data and also to deal with
“unusual” situations such as specials or discounts. We are always keeping the price that was actually charged for
that type of meal on that particular order.

#e question that needed to be asked about the original Many–Many relationship in Figure 4-20 was:

Are there any data we need to store about a particular meal type on a particular order?

And the answer is:

Yes, the quantity of that meal type ordered and the price being charged for that meal type on
the order.

When a Many–Many Doesn’t Need an Intermediate Class
A few Many–Many relationships contain complete information for a problem without the need for an
intermediate class in the data model. Problems that involve categories as part of the data often do not require
an additional class. Example 1-1, “#e Plant Database,” involved plants and uses to which they could be put. #e
original data model is repeated in Figure 4-22.

Figure 4-21. Orders for di!erent types of meal—ll with additional class to store quantities

CHAPTER 4 N LEARNING FROM THE DATA MODEL

56

quantities and they each depend on the particular meal) nor in the Meal class (for there will potentially be
hundreds of orders involving a particular type of meal, each with di!erent quantities).

Once again, our problem of where to put the additional data is solved by including a new class as shown in
Figure 4-21.

For some problems, it can be dif"cult to come up with a meaningful name for the intermediate class. In
such a case, it is always possible to use a concatenation of the two original class names as we have done here with
Order/Meal. We could maybe have called the class Orderline, in this example, as it represents each line in the
order (i.e., a meal and the quantity). You might "nd it helpful to sketch some objects of the three classes in Figure
4-21 to clarify what is happening.

We can also use this new intermediate class to solve one of the other problems we deferred in Chapter 3.
#is was the problem of coping with the price of a meal changing over time. In the Meal class in Figure 4-21,
we can de"ne the price attribute as being the current price for that type of meal. An order placed for that meal
today will be at that price. How do we know what was charged for this type of meal on an order several months
ago? To deal with the problem of changing prices, we can include an attribute, price, in the intermediate class
Order/Meal. #is will be the price charged for a particular meal on a particular order and will not change when
the current price changes in the Meal class. #is way we have a complete history of the prices for each meal on
each order. A price attribute in this intermediate class can allow us to keep historical data and also to deal with
“unusual” situations such as specials or discounts. We are always keeping the price that was actually charged for
that type of meal on that particular order.

#e question that needed to be asked about the original Many–Many relationship in Figure 4-20 was:

Are there any data we need to store about a particular meal type on a particular order?

And the answer is:

Yes, the quantity of that meal type ordered and the price being charged for that meal type on
the order.

When a Many–Many Doesn’t Need an Intermediate Class
A few Many–Many relationships contain complete information for a problem without the need for an
intermediate class in the data model. Problems that involve categories as part of the data often do not require
an additional class. Example 1-1, “#e Plant Database,” involved plants and uses to which they could be put. #e
original data model is repeated in Figure 4-22.

Figure 4-21. Orders for di!erent types of meal—ll with additional class to store quantities

CHAPTER 4 N LEARNING FROM THE DATA MODEL

57

We can ask the question, “Is there any information we want to keep about a particular species and a
particular use?”

In this case, the answer is probably, “No.” A Many–Many relationship that doesn’t require any additional
information often occurs when we have something that belongs to a number of di!erent categories; for example,
a plant has many di!erent uses and all we want to know is what they are.

It is possible, however, that in a di!erent situation we might want to record whether a particular plant is
excellent or just reasonable at hedging. Or we may want to note how many of a particular species are needed to
be suf"cient for attracting bees. In both these cases, we might need an intermediate class. Try sketching a new
model for these situations.

Summary
Even at the very early stages of analysis, a simple data model can provide us with a number of questions.
#e answers to these questions will help us to understand a problem better. #e resulting clari"cations to
the problem should eventually be re$ected in the use cases and may a!ect the "nal model and the eventual
implementation.

In this chapter, we have suggested some questions about a single relationship between two classes. Some of
the questions we have discussed are reviewed here.

Optionality: Should it be 0 or 1? Considering whether an optionality should be 0 or
1 might a!ect de"nitions of our classes; for example, “Would a student who was not
enrolled in any courses still be considered a student for the purposes of our database?”

A cardinality of 1: Might it occasionally be 2? We need to consider whether there
might be exceptional cases in which we might want to squeeze two numbers or
categories into a box designed for one; for example, “What happens if the weather
changes during a visit?” Rede"ning a class might help out for the exceptional cases, as
in, “If the weather changes, we will call it two visits.”

A cardinality of 1: What about historical data? Always consider whether the 1 in a
relationship really means “just one at a time.” For example, “A department has one
manager. Do we want to know who the previous managers of the department were?”
If so, the relationship should be Many–Many.

Many–Many: Are we missing anything? Consider whether there is information we
need to record about a particular pairing of objects from each class; for example,
“What might we want to know about a particular student and a particular course?”
If there is such information (e.g., the grade), introduce a new intermediate class.

Figure 4-22. Plants and their uses

CHAPTER 4 N LEARNING FROM THE DATA MODEL

58

TESTING YOUR UNDERSTANDING

Exercise 4-1.

Figure 4-23 shows a first draft of modeling the situation where a publishing company wants to keep
information about authors and books. Consider the possible optionalities at each end of the relationship
writes and so determine some possible definitions for a book and an author.

Exercise 4-2.

Figure 4-24 shows a possible data model for cocktail recipes. The Many–Many relationship uses can be
navigated in either direction. To find out the ingredients in a Manhattan or to discover the possible uses for
that bottle of Vermouth. What is missing?

Exercise 4-3.

Part of the data model about guests at a hostel is shown in Figure 4-25. How could the model be amended to
keep historical information about room occupancy?

Figure 4-23. Consider possible optionalities for authors writing books.

Figure 4-24. Cocktails and their ingredients. What is missing?

Figure 4-25. How could this be amended to keep historical information about room occupancy?

CHAPTER 4 N LEARNING FROM THE DATA MODEL

58

TESTING YOUR UNDERSTANDING

Exercise 4-1.

Figure 4-23 shows a first draft of modeling the situation where a publishing company wants to keep
information about authors and books. Consider the possible optionalities at each end of the relationship
writes and so determine some possible definitions for a book and an author.

Exercise 4-2.

Figure 4-24 shows a possible data model for cocktail recipes. The Many–Many relationship uses can be
navigated in either direction. To find out the ingredients in a Manhattan or to discover the possible uses for
that bottle of Vermouth. What is missing?

Exercise 4-3.

Part of the data model about guests at a hostel is shown in Figure 4-25. How could the model be amended to
keep historical information about room occupancy?

Figure 4-23. Consider possible optionalities for authors writing books.

Figure 4-24. Cocktails and their ingredients. What is missing?

Figure 4-25. How could this be amended to keep historical information about room occupancy?

