
CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

16

 The SQL for the query to retrieve Senior members is as follows:

 SELECT *
 FROM Member
 WHERE MemberType = 'Senior'

 This query has three parts, or clauses : The SELECT clause says what columns to retrieve. In this case,
 * means retrieve all the columns. The FROM clause says which table(s) the query involves, and the WHERE
clause describes the condition for deciding whether a particular row should be included in the result. The
condition says to check the value in the field MemberType . In SQL, when we specify an actual value for a
character or text field, we need to enclose the value in single quotes, as in 'Senior' .

 Now let’s look at how we can specify that we want to see only some of the columns in our result. I will
generally refer to selecting a subset of rows and projecting a subset of columns. Often the projection of a
subset of columns is the last step in a series of operations. We can think of gathering all the data we require
and then at the end asking for just the attributes or columns we need. We will see in Chapter 7 that we
sometimes also need to project similar columns from original or virtual tables before applying some of the
set operations, such as union and intersection.

 If we want a phone list of all the members we don’t need extra information such as handicaps or join
dates. Figure! 2-2 show a subset of the name and phone number columns from the Member table.

 Figure 2-1. Retrieving the subset of rows for Senior members .

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

16

 The SQL for the query to retrieve Senior members is as follows:

 SELECT *
 FROM Member
 WHERE MemberType = 'Senior'

 This query has three parts, or clauses : The SELECT clause says what columns to retrieve. In this case,
 * means retrieve all the columns. The FROM clause says which table(s) the query involves, and the WHERE
clause describes the condition for deciding whether a particular row should be included in the result. The
condition says to check the value in the field MemberType . In SQL, when we specify an actual value for a
character or text field, we need to enclose the value in single quotes, as in 'Senior' .

 Now let’s look at how we can specify that we want to see only some of the columns in our result. I will
generally refer to selecting a subset of rows and projecting a subset of columns. Often the projection of a
subset of columns is the last step in a series of operations. We can think of gathering all the data we require
and then at the end asking for just the attributes or columns we need. We will see in Chapter 7 that we
sometimes also need to project similar columns from original or virtual tables before applying some of the
set operations, such as union and intersection.

 If we want a phone list of all the members we don’t need extra information such as handicaps or join
dates. Figure! 2-2 show a subset of the name and phone number columns from the Member table.

 Figure 2-1. Retrieving the subset of rows for Senior members .

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

17

 The SQL to retrieve the name and phone columns from the Member table is:

 SELECT LastName, FirstName, Phone
 FROM Member

 Because we want to see these column values for every row, this query doesn’t have a WHERE clause .
 It is a simple matter to combine the retrieval of subsets of rows and columns. We might do this if we

wanted a phone list for just the senior members, as in Figure! 2-3 .

 Figure 2-2. Projecting a subset of columns to provide a phone list

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

18

 The SQL for the query depicted in Figure! 2-3 is:

 SELECT LastName, FirstName, Phone
 FROM Member
 WHERE MemberType = 'Senior'

 Using Aliases
 As our queries get more complicated they will incorporate a number of different tables. Some of the tables
may have the same column names, and we might need to distinguish them from each other. In SQL we can
preface each of the attributes in our query with the name of the table that it comes from, as shown here:

 SELECT Member.LastName, Member.FirstName, Member.Phone
 FROM Member
 WHERE Member.MemberType = 'Senior'

 Because typing the whole table name can become tiresome, and also because in some queries we might
need to compare data from more than one row of a table, SQL has the notion of an alias . Have a look at the
following query:

 SELECT m.LastName, m.FirstName, m.Phone
 FROM Member m
 WHERE m.MemberType = 'Senior'

 Figure 2-3. Retrieving a subset of rows and columns to produce a phone list of Senior members

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

20

 Table 2-1. Comparison Operators

 Operator Meaning Examples of True Statement

 = Equals 5=5 , 'Junior' = 'Junior'

 < Less than 4<5 , 'Ann' < 'Zebedee'

 <= Less than or equal to 4<=5 , 5<=5

 > Greater than 5>4 , 'Zebedee' > 'Ann'

 >= Greater than or equal to 5>=4 , 5>=5

 <> Not equal 5<>4 , 'Junior' <> 'Senior'

 Just a quick note of caution: in Table! 2-1 , some of our examples compare numbers, and some
compare characters. Recall from Chapter 1 that when we create a table, we specify the type of each field;
for example, MemberID was declared to be an INT (integer or whole number), and LastName a CHAR(20)
(a 20-character field). With fields like integer, comparisons are numerical. With text or character fields,
comparisons are alphabetical, and with date and time fields, comparisons are chronological (earlier dates
come first).

 When we compare character attributes, the comparison is based on the ASCII 2 or Unicode value of the
characters. As we might expect “A” (ASCII value 65) comes before “Z” (ASCII 90), so “A” < “Z”. With a string of
characters, if the first letter is the same then the order is decided by the second, and so on. So “ANNABEL” <
“ANNE”. However, the lowercase characters have higher ASCII codes than the uppercase ones. This means
that “a” (ASCII 97) > “Z” (ASCII 90). If you order a list of names alphabetically then, by default, a name
starting with a lowercase letter will appear after those starting with uppercase letters. For example “van
Dyke” will appear after “Zebedee.”

 If we put numbers in a character field, they will also sort alphabetically. This means you will have
comparisons such as “400” < “5”, because the first character, “4” (ASCII 34), in the left-hand text is less
than the first character, “5” (ASCII 35), on the right-hand side. So, make sure if a column is going to
contain numbers that you want to compare and order numerically, that it is declared as a numeric type,
or you will get some rather surprising results from your queries. Similarly, dates need to be in a column
declared with one of the date types or the comparisons and ordering may not be what you expect.

 With comparison operators, we can create many different queries. Table! 2-2 shows some examples of
Boolean expressions that we can use as conditions in the WHERE clause of an SQL statement for selecting
rows from the Member table.

 Table 2-2. Examples of Boolean Expressions on the Member Table

 Expression Retrieved Rows

 MemberType = 'Junior' All junior members

 Handicap <= 12 All members with a handicap of 12 or less

 JoinDate >= '01/01/2008' Everyone who has joined after the beginning of 2008

 Gender = 'F' All the women

 2 http://www.asciitable.com/

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

20

 Table 2-1. Comparison Operators

 Operator Meaning Examples of True Statement

 = Equals 5=5 , 'Junior' = 'Junior'

 < Less than 4<5 , 'Ann' < 'Zebedee'

 <= Less than or equal to 4<=5 , 5<=5

 > Greater than 5>4 , 'Zebedee' > 'Ann'

 >= Greater than or equal to 5>=4 , 5>=5

 <> Not equal 5<>4 , 'Junior' <> 'Senior'

 Just a quick note of caution: in Table! 2-1 , some of our examples compare numbers, and some
compare characters. Recall from Chapter 1 that when we create a table, we specify the type of each field;
for example, MemberID was declared to be an INT (integer or whole number), and LastName a CHAR(20)
(a 20-character field). With fields like integer, comparisons are numerical. With text or character fields,
comparisons are alphabetical, and with date and time fields, comparisons are chronological (earlier dates
come first).

 When we compare character attributes, the comparison is based on the ASCII 2 or Unicode value of the
characters. As we might expect “A” (ASCII value 65) comes before “Z” (ASCII 90), so “A” < “Z”. With a string of
characters, if the first letter is the same then the order is decided by the second, and so on. So “ANNABEL” <
“ANNE”. However, the lowercase characters have higher ASCII codes than the uppercase ones. This means
that “a” (ASCII 97) > “Z” (ASCII 90). If you order a list of names alphabetically then, by default, a name
starting with a lowercase letter will appear after those starting with uppercase letters. For example “van
Dyke” will appear after “Zebedee.”

 If we put numbers in a character field, they will also sort alphabetically. This means you will have
comparisons such as “400” < “5”, because the first character, “4” (ASCII 34), in the left-hand text is less
than the first character, “5” (ASCII 35), on the right-hand side. So, make sure if a column is going to
contain numbers that you want to compare and order numerically, that it is declared as a numeric type,
or you will get some rather surprising results from your queries. Similarly, dates need to be in a column
declared with one of the date types or the comparisons and ordering may not be what you expect.

 With comparison operators, we can create many different queries. Table! 2-2 shows some examples of
Boolean expressions that we can use as conditions in the WHERE clause of an SQL statement for selecting
rows from the Member table.

 Table 2-2. Examples of Boolean Expressions on the Member Table

 Expression Retrieved Rows

 MemberType = 'Junior' All junior members

 Handicap <= 12 All members with a handicap of 12 or less

 JoinDate >= '01/01/2008' Everyone who has joined after the beginning of 2008

 Gender = 'F' All the women

 2 http://www.asciitable.com/

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

21

 Some implementations of SQL are case sensitive when comparing text, and others are not. Being case
sensitive means that uppercase letters are treated as being different from their lowercase counterpart; in
other words, “Junior” is different from “junior,” which is different from “JUNIOR.” I usually check out any
new database system I use to see what it does. If you do not care about the case of the attribute you are
considering (that is, you are happy to retrieve rows where MemberType is “Junior” or “jUnIoR” or whatever),
you can make use of the SQL function UPPER . This will turn the value of each text attribute into uppercase
before you do the comparison. You can then compare that with the uppercase literal value, as shown here:

 SELECT *
 FROM Member m
 WHERE UPPER(m.MemberType) = 'JUNIOR'

 Logical Operators
 We can combine Boolean expressions to create more interesting conditions. For example, we can specify
that two expressions must both be true before we retrieve a particular row.

 Let’s assume we want to find all the junior girls. This requires two conditions to be true: they must be
female, and they must be juniors. We can easily express each of these conditions independently. After that,
we can use the logical operator AND to require that both conditions be true:

 SELECT *
 FROM Member m
 WHERE m.MemberType = 'Junior' AND m.Gender = 'F'

 We will look at three logical operators: AND , OR , and NOT . We have already seen how AND works. If we
use OR between two expressions, then only one of the expressions need be true (but if they are both true,
that is OK as well). NOT is used before an expression. For example, for our Member table, we might ask for
rows obeying the condition NOT (MemberType = 'Social') . This means check each row, and if the value of
 MemberType is “Social,” then we do not want that row. Table! 2-3 gives some more examples of using logical
operators in conditions.

 Table 2-3. Examples of Logical Operators

 Expression Description of Data

 MemberType = 'Senior' AND Handicap < 12 Seniors with a handicap under 12

 MemberType = 'Senior' OR Handicap < 12 All the senior members as well as anyone else with a
good handicap (those less than 12)

 NOT(MemberType = 'Social') All the members except the social ones (for the current
data, that would be just the seniors and juniors)

 Figure! 2-4 shows a diagrammatic representation of the queries in Table! 2-3 . Each circle represents a set
of rows (that is, those for social members or those for members with handicaps under 12). The shaded area
represents the result of the operation.

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

21

 Some implementations of SQL are case sensitive when comparing text, and others are not. Being case
sensitive means that uppercase letters are treated as being different from their lowercase counterpart; in
other words, “Junior” is different from “junior,” which is different from “JUNIOR.” I usually check out any
new database system I use to see what it does. If you do not care about the case of the attribute you are
considering (that is, you are happy to retrieve rows where MemberType is “Junior” or “jUnIoR” or whatever),
you can make use of the SQL function UPPER . This will turn the value of each text attribute into uppercase
before you do the comparison. You can then compare that with the uppercase literal value, as shown here:

 SELECT *
 FROM Member m
 WHERE UPPER(m.MemberType) = 'JUNIOR'

 Logical Operators
 We can combine Boolean expressions to create more interesting conditions. For example, we can specify
that two expressions must both be true before we retrieve a particular row.

 Let’s assume we want to find all the junior girls. This requires two conditions to be true: they must be
female, and they must be juniors. We can easily express each of these conditions independently. After that,
we can use the logical operator AND to require that both conditions be true:

 SELECT *
 FROM Member m
 WHERE m.MemberType = 'Junior' AND m.Gender = 'F'

 We will look at three logical operators: AND , OR , and NOT . We have already seen how AND works. If we
use OR between two expressions, then only one of the expressions need be true (but if they are both true,
that is OK as well). NOT is used before an expression. For example, for our Member table, we might ask for
rows obeying the condition NOT (MemberType = 'Social') . This means check each row, and if the value of
 MemberType is “Social,” then we do not want that row. Table! 2-3 gives some more examples of using logical
operators in conditions.

 Table 2-3. Examples of Logical Operators

 Expression Description of Data

 MemberType = 'Senior' AND Handicap < 12 Seniors with a handicap under 12

 MemberType = 'Senior' OR Handicap < 12 All the senior members as well as anyone else with a
good handicap (those less than 12)

 NOT(MemberType = 'Social') All the members except the social ones (for the current
data, that would be just the seniors and juniors)

 Figure! 2-4 shows a diagrammatic representation of the queries in Table! 2-3 . Each circle represents a set
of rows (that is, those for social members or those for members with handicaps under 12). The shaded area
represents the result of the operation.

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

18

 The SQL for the query depicted in Figure! 2-3 is:

 SELECT LastName, FirstName, Phone
 FROM Member
 WHERE MemberType = 'Senior'

 Using Aliases
 As our queries get more complicated they will incorporate a number of different tables. Some of the tables
may have the same column names, and we might need to distinguish them from each other. In SQL we can
preface each of the attributes in our query with the name of the table that it comes from, as shown here:

 SELECT Member.LastName, Member.FirstName, Member.Phone
 FROM Member
 WHERE Member.MemberType = 'Senior'

 Because typing the whole table name can become tiresome, and also because in some queries we might
need to compare data from more than one row of a table, SQL has the notion of an alias . Have a look at the
following query:

 SELECT m.LastName, m.FirstName, m.Phone
 FROM Member m
 WHERE m.MemberType = 'Senior'

 Figure 2-3. Retrieving a subset of rows and columns to produce a phone list of Senior members

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

19

 In the FROM clause, we have declared an alias or alternative name for the Member table, in this case m . We
can give our alias any name or letter we like; shorter is better. Then, in the rest of the query we can use the
alias whenever we want to specify an attribute from that table. It is a good idea to get into the habit of using a
table alias for each table contributing to the query.

 Saving Queries
 It is possible to keep the result of a query in a new permanent table (sometimes called a snapshot), but we
usually don’t want to do that because it will become out of date if the underlying data changes. What we
usually want to do is save the query instructions so that we can ask the same question another day. Consider
our phone list query. Every so often after the membership of the club has been updated, we will produce a
new phone list. Rather than having to construct the query each time, we can save the instructions in what is
known as a view . The code below shows how to create a view that we can use to provide up-to-date phone
lists. We have to give the view a name, which can be anything we want (PhoneList seems sensible), and then
we supply the SQL statement for retrieving the appropriate data:

 CREATE VIEW PhoneList AS
 SELECT m.LastName, m.FirstName, m.Phone
 FROM Member m

 You can think of PhoneList as the instructions to create a “virtual” table that we can use in other queries
in the same way that we use real tables. We just need to remember that the virtual table is created on the fly
by running the query on the permanent Member table and it is then gone. To get our phone list now, we can
simply use the PhoneList view:

 SELECT * FROM PhoneList

 Specifying Conditions for Selecting Rows
 In the queries we looked at in the previous sections, we used very simple conditions or criteria for
determining whether to include a row in the result of a query. In the following section, we will look more
closely at the different ways you can specify more complicated conditions.

 Comparison Operators
 A condition is a statement or expression that is either true or false, such as MemberType = 'Senior' . These
types of expressions are called Boolean expressions after the 19th-century English mathematician, George
Boole, who investigated their properties. The conditions we use to select rows from a table usually involve
comparing the values of an attribute to some constant value or another attribute. For example, we can ask
whether the value of an attribute is the same, different, or greater than some value. Table! 2-1 shows some
comparison operators we can use in our queries.

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

22

T

T

F

F

T

T T

F

F

FFF

T T T

T

T

F

FF

a) AND b) OR

Expression 1Expression 1

Expression 2

Expression 2

Expression

c) NOT

 Figure 2-5. Truth tables for logical operators (T = true, F = false)

<12

AND Handicap < 12 Handicap < 12

Senior <12Senior

Social

MemberType = 'Senior' MemberType = 'Senior' OR NOT MemberType = 'Social'

 Figure 2-4. Diagrammatic representation of the logical operators.

 The truth tables in Figure! 2-5 can be helpful in understanding how the logical operators work. You read
them like this: in Figures! 2-5a and 2-5b , we have two expressions, one along the top and one down the left.
Each expression can have one of two values: True (T) or False (F). If we combine them with the Boolean
expression AND, then Figure! 2-5a shows that the overall statement is true only if both the contributing
statements are true (the square in the top left). If we combine them with an OR statement, then the overall
statement is false only if both contributing statements are false (bottom right of Figure! 2-5b). The table in
Figure! 2-5c says that if our original statement is true and we put NOT in front, then the result is false (left
column), and vice versa.

 Sometimes it can be a bit tricky turning natural-language descriptions into Boolean expressions. If you
were asked for a list that included all the women and all the juniors (don’t ask why!), you might translate this
literally and write the condition MemberType = 'Junior' AND Gender = 'F' . However, the AND means both
conditions must be true, so this would give us junior women. What our natural-language statement really
means is “I want the row for any member if they are either a woman or a junior (or both).” Be careful.

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

22

T

T

F

F

T

T T

F

F

FFF

T T T

T

T

F

FF

a) AND b) OR

Expression 1Expression 1

Expression 2

Expression 2

Expression

c) NOT

 Figure 2-5. Truth tables for logical operators (T = true, F = false)

<12

AND Handicap < 12 Handicap < 12

Senior <12Senior

Social

MemberType = 'Senior' MemberType = 'Senior' OR NOT MemberType = 'Social'

 Figure 2-4. Diagrammatic representation of the logical operators.

 The truth tables in Figure! 2-5 can be helpful in understanding how the logical operators work. You read
them like this: in Figures! 2-5a and 2-5b , we have two expressions, one along the top and one down the left.
Each expression can have one of two values: True (T) or False (F). If we combine them with the Boolean
expression AND, then Figure! 2-5a shows that the overall statement is true only if both the contributing
statements are true (the square in the top left). If we combine them with an OR statement, then the overall
statement is false only if both contributing statements are false (bottom right of Figure! 2-5b). The table in
Figure! 2-5c says that if our original statement is true and we put NOT in front, then the result is false (left
column), and vice versa.

 Sometimes it can be a bit tricky turning natural-language descriptions into Boolean expressions. If you
were asked for a list that included all the women and all the juniors (don’t ask why!), you might translate this
literally and write the condition MemberType = 'Junior' AND Gender = 'F' . However, the AND means both
conditions must be true, so this would give us junior women. What our natural-language statement really
means is “I want the row for any member if they are either a woman or a junior (or both).” Be careful.

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

23

 Dealing with Nulls
 The example data in the Member table shown earlier in Figure! 2-1 is all accurate and complete. Every row has
a value for each attribute, except for Handicap , which doesn’t apply to some members. Real data is usually
not so clean and tidy. Let’s consider some different data, as in Figure! 2-6 .

 Figure 2-6. Table with missing data

 When there is no value in a cell in a table, it is said to be null . Nulls in a database can cause a few
headaches. Consider carrying out the following two queries : one to produce a list of male members and the
other a list of females. Given that golfers need to identity as either male or female for competition purposes,
we might assume that all the members of the club would appear on one list or the other. However, for the
data in Figure! 2-6 , we would leave out Kim Spence. You could argue that the data shouldn’t be like that, but
we are talking about real people and real clubs with less than accurate and complete data. Maybe Kim forgot
(or refused) to fill in the gender part of the application form. We can protect against this by insisting that
nulls are not allowed in a particular field when we create a table. The following SQL statement shows how
we could make Gender a field that always requires a value:

 CREATE TABLE Member (
 MemberID INT PRIMARY KEY,

 Gender CHAR(1) NOT NULL,

 )

 It is worth bearing in mind that making fields NOT NULL can create more headaches than it cures. If Kim
Spence did not complete all the boxes on his/her membership application but had organized payment for
the subscription, then we want to record him/her as a member and worry about the full details later. If we
make Gender a required field, then we can’t enter a record for him/her in the table — or we have to guess what
his/her gender is. Neither of these options is a good strategy, so it is best to be sparing when making fields
required. Remember that our primary key fields (by definition) always need a value.

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

23

 Dealing with Nulls
 The example data in the Member table shown earlier in Figure! 2-1 is all accurate and complete. Every row has
a value for each attribute, except for Handicap , which doesn’t apply to some members. Real data is usually
not so clean and tidy. Let’s consider some different data, as in Figure! 2-6 .

 Figure 2-6. Table with missing data

 When there is no value in a cell in a table, it is said to be null . Nulls in a database can cause a few
headaches. Consider carrying out the following two queries : one to produce a list of male members and the
other a list of females. Given that golfers need to identity as either male or female for competition purposes,
we might assume that all the members of the club would appear on one list or the other. However, for the
data in Figure! 2-6 , we would leave out Kim Spence. You could argue that the data shouldn’t be like that, but
we are talking about real people and real clubs with less than accurate and complete data. Maybe Kim forgot
(or refused) to fill in the gender part of the application form. We can protect against this by insisting that
nulls are not allowed in a particular field when we create a table. The following SQL statement shows how
we could make Gender a field that always requires a value:

 CREATE TABLE Member (
 MemberID INT PRIMARY KEY,

 Gender CHAR(1) NOT NULL,

 )

 It is worth bearing in mind that making fields NOT NULL can create more headaches than it cures. If Kim
Spence did not complete all the boxes on his/her membership application but had organized payment for
the subscription, then we want to record him/her as a member and worry about the full details later. If we
make Gender a required field, then we can’t enter a record for him/her in the table — or we have to guess what
his/her gender is. Neither of these options is a good strategy, so it is best to be sparing when making fields
required. Remember that our primary key fields (by definition) always need a value.

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

24

 Not all values of null mean there is a problem with the data. In our Member table, a field might be null
because it does not apply to a particular member. Helen and Sarah’s handicap may be genuinely null
because they do not have handicaps. However, it is fair to assume that every member should have a value for
 MemberType and JoinDate , so the nulls in these columns are because we do not know the value. In the real
world, expect that your tables will have missing data.

 Finding Nulls
 Given that in our tables we may have nulls that might cause us problems, it is useful to be able to find them.
After we have entered a batch of new members into the database, we can check for problems. We might want
to get a list of all the members who don’t have a value for Gender , say. To do this we can use the SQL phrase
 IS NULL :

 SELECT *
 FROM Member m
 WHERE m.Gender IS NULL

 Alternatively, we might want to retrieve only those members who do have a value in a cell. If we want
the names and handicaps of only those members who have a value for Handicap , we could use the NOT
operator to create the following query:

 SELECT *
 FROM Member m
 WHERE NOT (m.Handicap IS NULL)

 Comparisons Involving Null Values
 Given that we are going to have unexpected nulls in our tables, it is important to know how to deal with
them. What rows will match the two conditions shown here?

 Gender = 'F'
 NOT (Gender = 'F')

 You might think that if we carry out two queries, one to get!all the rows that match a condition and
another for all the rows that don’t match, then we will get the whole table. But, in fact, we don’t. Kim will not
be included with the first condition, because clearly the value of Gender does not equal 'F' . But when we ask
whether the value is NOT 'F' we can’t say, because we don’t know what the value is. It might be 'F' if it had
a value. In SQL when we compare null values with something, we don’t get either True or False because we
simply don’t know. This probably makes more sense if we think about handicaps. If we ask for everyone with
 Handicap > 12 , and also for those members who satisfy either NOT (Handicap > 12) or Handicap <=12 ,
then Sarah’s row will never be retrieved. The question doesn’t apply to her — she doesn’t have a handicap.

 Once we take nulls into consideration, our expressions for conditions might actually have one of three
values: True, False, or “Don’t know.” That is pretty much how the world works, if you think about it. Only
rows that are True for a condition are retrieved in a query. If the condition is False or if we don’t know, then
the row is not retrieved.

 If we include “Don’t know” in the truth tables they will look like those in Figure! 2-7 . For an AND
operation, if one expression is False , then it doesn’t matter about the others — the result will be False . For an
 OR operation, if one expression is True , then it doesn’t matter about the others, so the result will be True .

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

25

 3 Formally, in terms of relational algebra, the result of every operation will generate another relation or set of unique rows.
See Appendix 2 for more information.

T

T T

F

F

F

F

F

FF

?

?

? ??

Expression 1

Expression 2

a) AND

T

T T

F

F

T

F

?

?T

?

T

T ??

Expression 1

Expression 2

b) OR

TF

T F ?

?

Expression

c) NOT

 Figure 2-7. Truth tables with three-valued logic (T = True, F = False, ? = Don’t know)

 Managing Duplicates
 If our tables have been designed well, they will have a primary key. This ensures that every row is unique.
However, as soon as we retrieve a subset of data from the tables the result may not have unique rows. 3 Let’s
look at an example.

 Consider retrieving just the FirstName column from the Member table. Figure! 2-8 shows two possible
results.

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

26

 Figure 2-8. Projecting the FirstName column from the Member table

 It is useful to think about why we might carry out a query retrieving just names. Perhaps the query is
to help prepare a set of nametags for a club party. If that is the case, then two Thomases and a William are
going to feel left out if we use the unique output.

 You might think, what’s all the fuss? Of course we want to keep all the rows. However, consider
retrieving just the column with the membership types. Figure! 2-9 shows the outputs with duplicates
included and removed.

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

27

 It’s pretty difficult to think of a situation where you want the duplicated rows in Figure! 2-9a . The two
operations we have considered sound similar in natural language. “Give me a list of first names” and
“Give me a list of membership types” sound like the same sort of question, but they mean quite different
things. The first means “Give me a name for each member,” and the other means “Give me a list of unique
membership types.”

 What does SQL do? If we say SELECT MemberType FROM Member , we will get the output in Figure! 2-9a
with all the duplicates included. If we do not want the duplicates, then we can use the keyword DISTINCT :

 SELECT DISTINCT m.MemberType
 FROM Member m

 Whether or not you keep the duplicates depends very much on the information you require, so you
need to give it careful thought. If you were expecting the set of rows in Figure! 2-9b and got Figure! 2-9a , you
would most likely notice. With the two sets of rows in Figure! 2-8 , it is much more difficult to spot that you
have perhaps made a mistake. Get into the habit of thinking about duplicates for all your queries.

 Figure 2-9. Projecting the MemberType column from the Member table

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

27

 It’s pretty difficult to think of a situation where you want the duplicated rows in Figure! 2-9a . The two
operations we have considered sound similar in natural language. “Give me a list of first names” and
“Give me a list of membership types” sound like the same sort of question, but they mean quite different
things. The first means “Give me a name for each member,” and the other means “Give me a list of unique
membership types.”

 What does SQL do? If we say SELECT MemberType FROM Member , we will get the output in Figure! 2-9a
with all the duplicates included. If we do not want the duplicates, then we can use the keyword DISTINCT :

 SELECT DISTINCT m.MemberType
 FROM Member m

 Whether or not you keep the duplicates depends very much on the information you require, so you
need to give it careful thought. If you were expecting the set of rows in Figure! 2-9b and got Figure! 2-9a , you
would most likely notice. With the two sets of rows in Figure! 2-8 , it is much more difficult to spot that you
have perhaps made a mistake. Get into the habit of thinking about duplicates for all your queries.

 Figure 2-9. Projecting the MemberType column from the Member table

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

28

 Ordering Output
 Every now and then I refer to a “set of rows” rather than a table or a virtual table. The word set has two
implications. One is that there are no duplicates (and we have discussed that a lot!). The other implication
is that there is no particular order to the rows in our set. In theory, we don’t have a first row or a last row or
a next row. If we run a query to retrieve all the rows, or just some of the rows, from a table, then we have no
guarantee in what order they will be returned. However, sometimes we might like to display the results in a
particular order. We can do this with the key phrase ORDER BY . The following shows how to retrieve member
information ordered alphabetically by LastName :

 SELECT *
 FROM Member m
 ORDER BY m.LastName

 We can order by two or more values. For example, if we want to order Senior members with the same
 LastName by the value of their FirstName , we can include those two attributes (in that order) in the
 ORDER BY clause:

 SELECT *
 FROM Member m
 WHERE m.MemberType = 'Senior'
 ORDER BY m.LastName, m.FirstName

 The type of a field determines how the values will be ordered. By default, text fields will be ordered
alphabetically, number fields will be ordered numerically (smallest first), and date and time fields
chronologically (earlier dates and times first). We can also specify that the order be reversed with the
keyword DESC (for descending). There is an equivalent keyword ASC (for ascending), which is the default if
neither is specified. The following will return member names and handicaps ordered in descending order;
i.e., with the highest value of handicap first:

 SELECT m.Lastname, m.FirstName, m.Handicap
 FROM Member m
 ORDER BY m.Handicap DESC

 The way nulls are ordered in any output depends on the application; you will need to check. For example,
in SQL Server and Microsoft Access, nulls will appear at the top of an ascending list and the bottom of a
descending list. Oracle provides keywords such as NULLS FIRST and NULLS LAST so you can choose where
the null values go. A little trick to get your nulls at the bottom of an ascending list in SQL Server is to use a
case statement:

 SELECT m.LastName, m.FirstName, m.Handicap
 FROM Member m
 ORDER BY (CASE
 WHEN m.Handicap IS NULL THEN 1
 ELSE 0
 END), m.Handicap

 The preceding query has two attributes in the ORDER BY clause. It orders firstly by the case statement in
the parentheses. You can think of the case statement as creating a virtual column giving the value 0 to those
rows with a handicap and 1 to those which have no handicap value. When we order by this first attribute in
the ORDER BY clause, the rows with a value for a handicap will be before the nulls. Within these groups the
rows will then be ordered by the value of the handicap in ascending order.

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

29

 Performing Simple Counts
 As well as retrieving a subset of rows and columns from a table, we can also use SQL queries to provide some
statistics. There are SQL functions that allow us to count records, total or average values, find maximum and
minimum values, and so on. In this section, we will look at some simple queries for counting records. We
will return to this topic in Chapter 8 .

 We can use the COUNT function to return the number of records in the Member table. In the following
query, * means count each record:

 SELECT COUNT(*) FROM Member

 We can also count a subset of rows by adding a WHERE clause to specify those rows we want to include.
For example, we can use the following query to count the number of senior members:

 SELECT COUNT(*) FROM Member m
 WHERE m.MemberType = 'Senior'

 Because we have just been talking about nulls and duplicate values, it is worth briefly mentioning here
how these will affect our counts. Rather than use * as a parameter to the COUNT function so that it counts all
the rows, we can put an attribute such as Handicap in the parentheses. If we do this only those rows with a
value in the Handicap field will be included in the count.

 SELECT COUNT(Handicap) FROM Member

 We can also specify that we want to count the number of unique values for an attribute. If we want to
know how many different values of MemberType appear in the Member table then we can use the following
query:

 SELECT COUNT(DISTINCT MemberType) FROM Member

 It is worth reiterating that different database software will support different parts of the SQL standard
syntax. For example, Microsoft Access currently does not support COUNT(DISTINCT MemberType) , seen in the
previous query. There is usually a way to work around these differences to find an equivalent query, and we
will look at how to rephrase the preceding query and other issues related to aggregates and summaries in
Chapter 8 .

 Avoiding Common Mistakes
 Retrieving a subset of rows and columns from a single table is the most simple of SQL queries. However, you
have seen that you still need to be careful. It is important to remember that there will be null values in your
tables and to think carefully about how your selection conditions will treat them. You also need to remember
that if you do not retain the primary key fields from your tables, there is the potential to have duplicate rows,
and you must deal with them appropriately.

 There are a couple of other mistakes that are commonly made when selecting a subset of rows. They
don’t become apparent with a table like Member , so I’ll introduce some more of the tables in the golf club
database. Figure! 2-10 shows part of the Member table and two other tables: Entry and Tournament . The
first row in the Entry table records that person 118 (Melissa McKenzie) entered tournament 24 (Leeston)
in 2014.

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

31

 Say we wanted to find the members who have entered both tournaments 36 and 38. There is a
temptation to again use the AND operator and write the query as follows:

 SELECT e.MemberID
 FROM Entry e
 WHERE e.TourID = 36 AND e.TourID= 38

 Can you work out what this query will return? This is where it is helpful to think in terms of the row
variable e investigating each row in table Entry as in Figure! 2-11 .

 Figure 2-11. The row variable e investigates each row independently.

 Imagine our finger is pointing at the row shown in the diagram. Does this row (415, 36, 2015) satisfy
the condition e.TourID = 36 AND e.TourID= 38 ? It satisfies the first part, but the AND operator requires
the row to satisfy both conditions. No single row in our table will have both 36 and 38 in the tournament
column because each row is for just one entry. The SQL query we suggested will never find any rows; it
will always return an empty table. If we change the Boolean operator to OR , we will get the row indicated
in Figure! 2-10 returned; however, we will also then get anyone who has entered either 36 or 38 but not
necessarily both.

 This particular query cannot be solved with a simple WHERE clause. By definition, the condition in the
 WHERE applies to each row independently . To answer the question about who has entered both competitions,
we need to look at more than one row of the Entry table at the same time (that is, two fingers). If we have
two fingers, one pointing at the row shown in Figure! 2-10 and another pointing at the following row, then
we can deduce that 415 has entered both tournaments. We’ll look at how to do this in Chapter 5 .

CHAPTER 2 ! SIMPLE QUERIES ON ONE TABLE

32

 Incorrectly Using a WHERE Clause to Answer Questions with the
Word “not”
 Now let’s consider another common error. It is easy to find the people who have entered tournament 38 with
the condition e.TourID = 38 . It is tempting to try to retrieve the people who have not entered tournament
38 by changing the condition slightly. Can you figure out what rows the following SQL query will retrieve?

 SELECT e.MemberID
 FROM Entry e
 WHERE e.TourID <> 38

 What about the row that the finger is pointing to in Figure! 2-11 ? Does this satisfy e.TourID <> 38 ? It
certainly does. But this doesn’t mean 415 hasn’t entered tournament 38 (the following row says he did). The
query, in fact, returns all the people who have entered some tournament that isn’t tournament 38 (which is
unlikely to be a question you’ll ever want to ask!).

 This is another type of question that can’t be answered with a simple WHERE clause that looks at
independent rows in a table. In fact, we can’t even answer this question with a query that involves only the
 Entry table. Member 138, Michael Stone, has not entered tournament 38, but he doesn’t even get a mention
in the Entry table because he has never entered any tournaments at all. We’ll see how to deal with questions
like this in Chapter 7 .

 Summary
 In this chapter, we have looked at queries on a single table. Some of the main points covered are:

• We can return a subset of rows that satisfy a given condition by using a WHERE clause.
The condition is a Boolean expression, which is a statement that is either true or not
true. The condition is applied to each row of the table independently.

• The SELECT clause allows us to specify a subset of columns.

• Because the result of a query is a set of rows, we cannot guarantee the order in which
the rows will be returned. If we want to display the result in a particular order, we can
use the ORDER BY clause.

• It is possible to create a view, which essentially stores an SQL command so that you
can run it over and over again as the data in the base tables change.

• Tables are likely to have null values (both on purpose and by mistake). Always check
how your conditions will apply to null values.

• When you project a subset of columns using an SQL command, the default is to
retain duplicate rows in the result. Always think about how you need to deal with the
duplicates, and use the keyword DISTINCT if you want unique rows.

• The WHERE clause considers only one row at a time. Don’t use it for queries that
require you to look at several rows at once, as in who entered both tournaments or
who did not enter this tournament.

