MemberlD LastName FirstName MemberType Phone Handicap JoinDate Coach Team Gender
118 McKenzie Melissa Junior 963270 30 28/05/2005 153 F

176 Branch Helen Social 589419 6/12/2011
178 Beck Sarah Social 226596 124/01/2010 _
228 Burton Sandra Junior 244493 26 9/07/2013 153

286 Pollard Robert Junior 617681 19 13/08/2013 235 TeamB M

414 Gilmore Jane Junior 5 30/05/2007 153 TeamA F

469 Willis Carolyn Junior 688378 29 14/01/2011
487 Kent Susan Social 707217 7/10/2010

Figure 2-1. Retrieving the subset of rows for Senior members.

Figure 2-1. Retrieving the subset of rows for Senior members.

The SQL for the query to retrieve Senior members is as follows:

SELECT *
FROM Member
WHERE MemberType = 'Senior'

This query has three parts, or clauses: The SELECT clause says what columns to retrieve. In this case,
* means retrieve all the columns. The FROM clause says which table(s) the query involves, and the WHERE
clause describes the condition for deciding whether a particular row should be included in the result. The
condition says to check the value in the field MemberType. In SQL, when we specify an actual value for a
character or text field, we need to enclose the value in single quotes, as in 'Senior'.

MemberlID LastName FirstName MemberType Phone Handlcap JoinDate Coach Team Gender

118 Mc Junior 30 28/05/2005’ 153 F
138 St Senior 30 31/05/2009 M
153 N¢ Senior 11 12/08/2006 TeamB F
176 Bre Social 6/12/2011 F
178 Be Social 24/01/2010 F
228 E Junior 26 9/07/2013 153 F
235 Coc Senior 14 5/03/2008 153 TeamB M
239 Spe Senior 10 22/06/2006 M
258 Olsc Senior 16 29/07/2013' F
286 Pc Junior 19 13/08/2013 235 TeamB M
290 Se Senior 26 28/07/2008 235 M
323 Senior 3 18/05/2009 TeamA M
3318 Senior 25 7/04/2009 153 M
332 Bridges Senior 12 23/03/2007 235 F
339 Senior 21 17/04/2009 TeamB F
414 G Junior 5 30/05/2007 153 TeamA F
415 Te Senior 7 27/11/2007 235 TeamA M
461 Reec Senior 3 5/08/2005 235 TeamA M
469 Junior 29 14/01/2011_ F
487 Social 7/10/2010 F

Figure 2-2. Projecting a subset of columns to provide a phone list

The SQL to retrieve the name and phone columns from the Member table is:

SELECT LastName, FirstName, Phone
FROM Member

MemberlD LastName FirstName MemberType Phone Handicap JoinDate Coach Team Gender

118 McKenzie Melissa Junior 963270 30 28/05/2005 153 F
153 Senior 11 12/08/2006 TeamB F
176 Branch Helen Social 589419 6/12/2011 B
178 Beck Sarah Social 226596 24/01/2010 3
228 Burton Sandra Junior 244493 26 9/07/2013 153 F
235 Senior 14 5/03/2008 153 TeamB M
239 Senior 10 22/06/2006 M
258 Senior 16 29/07/2013 F
286 Pollard Robert Junior 617681 19 13/08/2013 235 TeamB M
290 Senior 26 28/07/2008 235 M
323 Senior 3 18/05/2009 TeamA M
331 Senior 25 7/04/2009 153 M
332 Senior 12 23/03/2007 235 F
339 Senior 21 17/04/2009 TeamB F
414 Gilmore Jane Junior 459558 5 30/05/2007 153 TeamA F
415_ Senior - 7 27/11/2007 235 TeamA M
461 Senior 3 5/08/2005 235 TeamA M
469 Willis Carolyn Junior 688378 29 14/01/2011 ©
487 Kent Susan Social 707217 7/10/2010 -

Figure 2-3. Retrieving a subset of rows and columns to produce a phone list of Senior members

The SQL for the query depicted in Figure 2-3 is:

SELECT LastName, FirstName, Phone
FROM Member
WHERE MemberType = 'Senior'

Table 2-1. Comparison Operators

Operator Meaning Examples of True Statement
= Equals 5=5, 'Junior' = 'Junior'

< Less than 4<5, 'Ann' < 'Zebedee'

<= Less than or equal to 4<=5, 5¢=5

> Greater than 5>4, 'Zebedee' > 'Ann'

>= Greater than or equal to 5>=4, 5>=5

<> Not equal 5<>4, 'Junior' <> 'Senior'

Just a quick note of caution: in Table 2-1, some of our examples compare numbers, and some
compare characters. Recall from Chapter 1 that when we create a table, we specify the type of each field;
for example, MemberID was declared to be an INT (integer or whole number), and LastName a CHAR(20)

(a 20-character field). With fields like integer, comparisons are numerical. With text or character fields,
comparisons are alphabetical, and with date and time fields, comparisons are chronological (earlier dates
come first).

With comparison operators, we can create many different queries. Table 2-2 shows some examples of
Boolean expressions that we can use as conditions in the WHERE clause of an SQL statement for selecting
rows from the Member table.

Table 2-2. Examples of Boolean Expressions on the Member Table

Expression Retrieved Rows

MemberType = 'Junior’ All junior members

Handicap <= 12 All members with a handicap of 12 or less

JoinDate >= '01/01/2008' Everyone who has joined after the beginning of 2008

Gender = 'F' All the women

SELECT *
FROM Member m
WHERE UPPER(m.MemberType) = 'JUNIOR'

Logical Operators

We can combine Boolean expressions to create more interesting conditions. For example, we can specify
that two expressions must both be true before we retrieve a particular row.

Let’s assume we want to find all the junior girls. This requires two conditions to be true: they must be
female, and they must be juniors. We can easily express each of these conditions independently. After that,
we can use the logical operator AND to require that both conditions be true:

SELECT *
FROM Member m
WHERE m.MemberType = 'Junior’' AND m.Gender = 'F’

Table 2-3. Examples of Logical Operators

Expression Description of Data
MemberType = 'Senior' AND Handicap < 12 Seniors with a handicap under 12
MemberType = 'Senior' OR Handicap < 12 All the senior members as well as anyone else with a

good handicap (those less than 12)

NOT(MembexrType = 'Social') All the members except the social ones (for the current
data, that would be just the seniors and juniors)

Figure 2-4 shows a diagrammatic representation of the queries in Table 2-3. Each circle represents a set
of rows (that is, those for social members or those for members with handicaps under 12). The shaded area
represents the result of the operation.

As our queries get more complicated they will incorporate a number of different tables. Some of the tables
may have the same column names, and we might need to distinguish them from each other. In SQL we can
preface each of the attributes in our query with the name of the table that it comes from, as shown here:

SELECT Member.LastName, Member.FirstName, Member.Phone
FROM Member

WHERE Member.MemberType = 'Senior'

Because typing the whole table name can become tiresome, and also because in some queries we might

need to compare data from more than one row of a table, SQL has the notion of an alias. Have a look at the
following query:

SELECT m.LastName, m.FirstName, m.Phone
FROM Member m

WHERE m.MemberType = 'Senior'

CREATE VIEW PhonelList AS
SELECT m.LastName, m.FirstName, m.Phone
FROM Member m

You can think of PhoneList as the instructions to create a “virtual” table that we can use in other queries
in the same way that we use real tables. We just need to remember that the virtual table is created on the fly
by running the query on the permanent Member table and it is then gone. To get our phone list now, we can
simply use the PhonelList view:

SELECT * FROM Phonelist

Expression 1 Expression 1 Expression
T F T F T F
& &
= T F = T T F T
(1°] D
% A
=} =}
= =
N F F F N F T F
a) AND b) OR c) NOT

Figure 2-5. Truth tables for logical operators (T = true, F = false)

Sometimes it can be a bit tricky turning natural-language descriptions into Boolean expressions. If you
were asked for a list that included all the women and all the juniors (don’t ask why!), you might translate this
literally and write the condition MemberType = "Junior' AND Gender = 'F'.However, the AND means both
conditions must be true, so this would give us junior women. What our natural-language statement really
means is “I want the row for any member if they are either a woman or a junior (or both).” Be careful.

LastName - FirstName - MemberType - Handicap - Gender - JoinDate -

McKenzie
Stone
Nolan
Branch
Beck
Burton
Cooper
Spence
Olson
Pollard
Sexton
Wilcox

Melissa
Michael
Brenda
Helen
Sarah
Sandra
William
Kim
Barbara
Robert
Thomas
Daniel

Junior
Senior
Senior
Social

Junior
Senior
Senior
Senior
Junior
Senior
Senior

Figure 2-6. Table with missing data

30 F
30 M
11F
F
F
26 F
14 M
10
16 F
19 M
26 M
3 M

28-May-05

12-Aug-06
06-Dec-11
24-Jan-10
09-Jul-13
05-Mar-08
22-Jun-06
29-Jul-13
13-Aug-13
28-Jul-08
18-May-09

When there is no value in a cell in a table, it is said to be null. Nulls in a database can cause a few
headaches. Consider carrying out the following two queries: one to produce a list of male members and the
other a list of females. Given that golfers need to identity as either male or female for competition purposes,
we might assume that all the members of the club would appear on one list or the other. However, for the
data in Figure 2-6, we would leave out Kim Spence. You could argue that the data shouldn’t be like that, but
we are talking about real people and real clubs with less than accurate and complete data. Maybe Kim forgot
(or refused) to fill in the gender part of the application form. We can protect against this by insisting that
nulls are not allowed in a particular field when we create a table. The following SQL statement shows how
we could make Gender a field that always requires a value:

CREATE TABLE Member (
MemberID INT PRIMARY KEY,

Gender CHAR(1) NOT NULL,

)

Finding Nulls

Given that in our tables we may have nulls that might cause us problems, it is useful to be able to find them.
After we have entered a batch of new members into the database, we can check for problems. We might want

to get a list of all the members who don’t have a value for Gender, say. To do this we can use the SQL phrase
IS NULL:

SELECT *
FROM Member m
WHERE m.Gender IS NULL

Alternatively, we might want to retrieve only those members who do have a value in a cell. If we want
the names and handicaps of only those members who have a value for Handicap, we could use the NOT
operator to create the following query:

SELECT *
FROM Member m
WHERE NOT (m.Handicap IS NULL)

Comparisons Involving Null Values

Given that we are going to have unexpected nulls in our tables, it is important to know how to deal with
them. What rows will match the two conditions shown here?

Gender = 'F'
NOT (Gender = 'F')

Z uoissaidx3

Figure 2-7. Truth tables with three-valued logic (T = True, F = False, ? = Don’t know)

Expression 1

T | F
T | F
F | F
2 | F
a) AND

Z uoissaldx3

Expression 1

Expression

T

F

?

F

T

?

T|F
T|T
T|F
T | 2

b) OR

c) NOT

FirstName ~
Melissa
Michael
Brenda
Helen
Sarah
Sandra
William
Thomas
Barbara
Robert
Thomas
Daniel
Thomas
Deborah
Betty
Jane
William
Robert
Carolyn
Susan

a) With duplicates

Figure 2-8. Projecting the FirstName column from the Member table

FirstName ~
Barbara
Betty
Brenda
Carolyn
Daniel
Deborah
Helen
Jane
Melissa
Michael
Robert
Sandra
Sarah
Susan
Thomas
William

b) Without duplicates

MemberType ~ MemberType ~
Junior Junior
Senior Senior
Senior Social
Social

Social

Junior

Senior

Senior

Senior

Junior

Senior

Senior

Senior

Senior

Senior

Junior

Senior

Senior

Junior

Social

a) With duplicates b) Without duplicates

Figure 2-9. Projecting the MemberType column from the Member table

Figure 2-9. Projecting the MemberType column from the Member table

It’s pretty difficult to think of a situation where you want the duplicated rows in Figure 2-9a. The two
operations we have considered sound similar in natural language. “Give me a list of first names” and
“Give me a list of membership types” sound like the same sort of question, but they mean quite different
things. The first means “Give me a name for each member,’” and the other means “Give me a list of unique
membership types.”

What does SQL do? If we say SELECT MemberType FROM Member, we will get the output in Figure 2-9a
with all the duplicates included. If we do not want the duplicates, then we can use the keyword DISTINCT:

SELECT DISTINCT m.MemberType
FROM Member m

Whether or not you keep the duplicates depends very much on the information you require, so you
need to give it careful thought. If you were expecting the set of rows in Figure 2-9b and got Figure 2-9a, you
would most likely notice. With the two sets of rows in Figure 2-8, it is much more difficult to spot that you
have perhaps made a mistake. Get into the habit of thinking about duplicates for all your queries.

SELECT *
FROM Member m
ORDER BY m.LastName

We can order by two or more values. For example, if we want to order Senior members with the same
LastName by the value of their FirstName, we can include those two attributes (in that order) in the
ORDER BY clause:

SELECT *

FROM Member m

WHERE m.MemberType = 'Senior'
ORDER BY m.LastName, m.FirstName

The type of a field determines how the values will be ordered. By default, text fields will be ordered
alphabetically, number fields will be ordered numerically (smallest first), and date and time fields
chronologically (earlier dates and times first). We can also specify that the order be reversed with the
keyword DESC (for descending). There is an equivalent keyword ASC (for ascending), which is the default if
neither is specified. The following will return member names and handicaps ordered in descending order;
i.e., with the highest value of handicap first:

SELECT m.Lastname, m.FirstName, m.Handicap
FROM Member m
ORDER BY m.Handicap DESC

The way nulls are ordered in any output depends on the application; you will need to check. For example,
in SQL Server and Microsoft Access, nulls will appear at the top of an ascending list and the bottom of a
descending list. Oracle provides keywords such as NULLS FIRST and NULLS LAST so you can choose where
the null values go. A little trick to get your nulls at the bottom of an ascending list in SQL Server is to use a
case statement:

SELECT m.LastName, m.FirstName, m.Handicap
FROM Member m
ORDER BY (CASE
WHEN m.Handicap IS NULL THEN 1
ELSE 0
END), m.Handicap

SELECT COUNT(*) FROM Member

We can also count a subset of rows by adding a WHERE clause to specify those rows we want to include.
For example, we can use the following query to count the number of senior members:

SELECT COUNT(*) FROM Member m
WHERE m.MemberType = 'Senior'

Because we have just been talking about nulls and duplicate values, it is worth briefly mentioning here
how these will affect our counts. Rather than use * as a parameter to the COUNT function so that it counts all
the rows, we can put an attribute such as Handicap in the parentheses. If we do this only those rows with a
value in the Handicap field will be included in the count.

SELECT COUNT(Handicap) FROM Member

We can also specify that we want to count the number of unique values for an attribute. If we want to
know how many different values of MemberType appear in the Member table then we can use the following

query:

SELECT COUNT(DISTINCT MemberType) FROM Member

MemberlD - | LastName - FirstName - MemberlD - | TourlD - | Year - TourlD - TourName -
118 McKenzie Melissa 118 24 2014 24 Leeston
138 Stone Michael 228 24 2015 25 Kaiapoi
153 Nolan Brenda 228 25 2015 36 WestCoast
176 Branch Helen 228 36 2015 38 Canterbury
178 Beck Sarah 235 38 2013 40 Otago
228 Burton Sandra 235 38 2015
235 Cooper William 235 40 2014
239 Spence Thomas 235 40 2015
258 Olson Barbara 239 25 2015
286 Pollard Robert 239 40 2013
290 Sexton Thomas 258 24 2014
323 Wilcox Daniel 258 38 2014
331 Schmidt Thomas 286 24 2013
332 Bridges Deborah 286 24 2014
339 Young Betty 286 24 2015
414 Gilmore Jane 415 24 2015
415 Taylor William 415 25 2013
461 Reed Robert 415 36 2014
469 Willis Carolyn 415 36 2015
487 Kent Susan 415 38 2013

SELECT e.MemberID
FROM Entry e
WHERE e.TourID = 36 AND e.Year = 2015
a) Member (Some columns) b) Entry c¢) Tournament

Figure 2-10. Introducing the Tournament and Entry tables

Say we wanted to find the members who have entered both tournaments 36 and 38. There is a
temptation to again use the AND operator and write the query as follows:

SELECT e.MemberID
FROM Entry e
WHERE e.TourID = 36 AND e.TourID= 38

Can you work out what this query will return? This is where it is helpful to think in terms of the row
variable e investigating each row in table Entry as in Figure 2-11.

MemberiD + TourlD ~ Year -~

286 24 2014
286 24 2015
415 24 2015
415 25 2013
415 36 2014
e & 415 36 2015
415 38 2013
415 38 2015
415 40 2013
415 40 2014
415 40 2015

Figure 2-11. The row variable e investigates each row independently.

Incorrectly Using a WHERE Clause to Answer Questions with the
Word “not”

Now let’s consider another common error. It is easy to find the people who have entered tournament 38 with
the condition e.TourID = 38.Itis tempting to try to retrieve the people who have not entered tournament
38 by changing the condition slightly. Can you figure out what rows the following SQL query will retrieve?

SELECT e.MemberID
FROM Entry e
WHERE e.TourID <> 38

What about the row that the finger is pointing to in Figure 2-11? Does this satisfy e. TourID <> 38?1t
certainly does. But this doesn’t mean 415 hasn’t entered tournament 38 (the following row says he did). The
query, in fact, returns all the people who have entered some tournament that isn’t tournament 38 (which is
unlikely to be a question you'll ever want to ask!).

This is another type of question that can’t be answered with a simple WHERE clause that looks at
independent rows in a table. In fact, we can’t even answer this question with a query that involves only the
Entry table. Member 138, Michael Stone, has not entered tournament 38, but he doesn’t even get a mention
in the Entry table because he has never entered any tournaments at all. We'll see how to deal with questions
like this in Chapter 7.

