
APPENDIX N TESTING YOUR UNDERSTANDING

197

EXERCISE 4-1

Figure A-12 shows a first draft of modeling the situation where a publishing company wants to keep
information about authors and books. Consider the possible optionalities at each end of the relationships
writes, and so determine some possible definitions for a book and an author.

Figure A-12. Consider possible optionalities for authors writing books

At first we might think that an author will always have at least one book he has written and a book will 
always have at least one author (even if we might not know who it is). This may be true for actual books and l
authors, but here we are concerned with information about books and authors. A publishing company might n
often see an opportunity for a book on a particular topic and record that information while they search for
an author. Similarly, a publisher might retain a potential author and store information even though no books 
have yet been written for the publisher by that person.

Possible definitions might include: a book is a work that has been written or is planned to be written; an 
author is a person who has or might in the future write a book.

EXERCISE 4-2

Figure A-13 shows a possible data model for cocktail recipes. What is missing?

Figure A-13. Cocktails and their ingredients; what is missing?

Each cocktail may have a number of ingredients (Manhattan: Vermouth, Whisky; Margarita: Tequila, Triple
Sec, Lime). What are missing are the quantities. As is often the case with a Many–Many relationship, an 
intermediate class is required. The quantities depend on a particular pairing of Cocktail and Ingredient. 
A better model is shown in Figure A-14, along with some possible data. The inclusion of the Recipe class
allows us to keep information such as how much Rum is required for a Daiquiri as opposed to a Cable Car.



APPENDIX N TESTING YOUR UNDERSTANDING

197

EXERCISE 4-1

Figure A-12 shows a first draft of modeling the situation where a publishing company wants to keep
information about authors and books. Consider the possible optionalities at each end of the relationships
writes, and so determine some possible definitions for a book and an author.

Figure A-12. Consider possible optionalities for authors writing books

At first we might think that an author will always have at least one book he has written and a book will 
always have at least one author (even if we might not know who it is). This may be true for actual books and l
authors, but here we are concerned with information about books and authors. A publishing company might n
often see an opportunity for a book on a particular topic and record that information while they search for
an author. Similarly, a publisher might retain a potential author and store information even though no books 
have yet been written for the publisher by that person.

Possible definitions might include: a book is a work that has been written or is planned to be written; an 
author is a person who has or might in the future write a book.

EXERCISE 4-2

Figure A-13 shows a possible data model for cocktail recipes. What is missing?

Figure A-13. Cocktails and their ingredients; what is missing?

Each cocktail may have a number of ingredients (Manhattan: Vermouth, Whisky; Margarita: Tequila, Triple
Sec, Lime). What are missing are the quantities. As is often the case with a Many–Many relationship, an 
intermediate class is required. The quantities depend on a particular pairing of Cocktail and Ingredient. 
A better model is shown in Figure A-14, along with some possible data. The inclusion of the Recipe class
allows us to keep information such as how much Rum is required for a Daiquiri as opposed to a Cable Car.



APPENDIX N TESTING YOUR UNDERSTANDING

198

EXERCISE 4-3

Part of the data model about guests at a hostel is shown in Figure A-15. How could the model be amended to 
keep historical information about room occupancy?

Figure A-15. How could this be amended to keep historical information about room occupancy?

Recipe Table

Figure A-14. An intermediate class, Recipe, can record quantities for each pairing of cocktail and ingredient.

The data model indicates that, for a hostel with single occupancy rooms, a room might be empty or have 
at most one occupant. Each current guest occupies one room. Over time, however, a room will have many 
different guests, and guests may return and occupy different rooms. This needs to be modeled as a Many–
Many relationship as in Figure A-16. (As an aside, you can deduce from the optionality of 1 for a guest being
associated with a room, that our definition of a guest is someone who has been assigned a room at some 
stage—not just any person who might or might not come to the hostel.)

Figure A-16. Guests and rooms modeled with a Many–Many relationship

Now that we have a Many–Many relationship we need to ask the question: is anything missing? Clearly 
what is missing is information about when a particular guest occupied a particular room. This requires an
intermediate class as in Figure A-17.



APPENDIX N TESTING YOUR UNDERSTANDING

198

EXERCISE 4-3

Part of the data model about guests at a hostel is shown in Figure A-15. How could the model be amended to 
keep historical information about room occupancy?

Figure A-15. How could this be amended to keep historical information about room occupancy?

Recipe Table

Figure A-14. An intermediate class, Recipe, can record quantities for each pairing of cocktail and ingredient.

The data model indicates that, for a hostel with single occupancy rooms, a room might be empty or have 
at most one occupant. Each current guest occupies one room. Over time, however, a room will have many 
different guests, and guests may return and occupy different rooms. This needs to be modeled as a Many–
Many relationship as in Figure A-16. (As an aside, you can deduce from the optionality of 1 for a guest being
associated with a room, that our definition of a guest is someone who has been assigned a room at some 
stage—not just any person who might or might not come to the hostel.)

Figure A-16. Guests and rooms modeled with a Many–Many relationship

Now that we have a Many–Many relationship we need to ask the question: is anything missing? Clearly 
what is missing is information about when a particular guest occupied a particular room. This requires an
intermediate class as in Figure A-17.



APPENDIX N TESTING YOUR UNDERSTANDING

199

Each guest can have several bookings over time, as can a room. Each booking is for one guest in a particular
room. A word of caution here though—our original data model (Figure A-16) indicated that a room could 
only have a single guest. Now that we have allowed many guests in a room over time, we have lost the 
information that at any one time a room can have only one guest. Our model in Figure A-17 would not
prevent several people all having a simultaneous booking for one room. These sorts of problems are never
simple! One way to record a business rule about simultaneous bookings would be to describe it in the use
case for adding a booking for a room. It could say something such as: no booking can be added to a room 
where an existing booking has overlapping dates. A data model gives us a huge amount of insight, but on its
own it is not a complete description of a problem.

EXERCISE 5-1

The class in Figure A-18 records information about a department. What other options are there for modeling
information about the manager and location of a department?

Figure A-17. Including a Booking class to keep information about the dates that guests occupy rooms

Figure A-18. Initial attempt at modeling the information about a department

Let’s first think about location. What might we want to do with this information? It may be useful to be able to 
find all the departments that are in the same location—to let them know the CEO is visiting, say. If we want to 
retrieve an object based on the value of an attribute, then we must ensure that the value is stored consistently 
in each object. Creating a new class can help with that. If we introduce a Location class, then we can store 
information about each location and set up a relationship between departments and location. Introducing a
Location class also allows us to keep additional information about the location: address, phone, and so on.

It is unlikely that we will regularly want to retrieve department objects based on the manager’s name, as 
for the most part managers will only be attached to a single department. However, there is a great deal
of additional information we need to know about a manager. How to contact him would be a start. Do we 
already have this information? The company will surely have information stored about all its employees, so 
here we should model manager as a relationship to an existing Employee class.

A better model is shown in Figure A-19. If you are keen, try developing this new model to account for 
previous managers.


